1,777
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Mapping clay minerals in an open-pit mine using hyperspectral and LiDAR data

, , &
Pages 511-526 | Received 01 Oct 2014, Accepted 19 Feb 2015, Published online: 17 Feb 2017

References

  • Bishop J.L., Lane M.D., Dyar M.D., Brown A.J. (2008)—Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas. Clay minerals, 43: 35–54. doi: http://dx.doi.org/10.1180/claymin.2008.043.1.03.
  • Buckley S.J., Kurz T.H., Howell J.A., Schneider D. (2013)—Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis. Computers and Geosciences, 54: 249–258. doi: http://dx.doi.org/10.1016/j.cageo.2013.01.018.
  • Clark R.N., Roush T.L. (1984)—Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89 (B7): 6329–6340. doi: http://dx.doi.org/10.1029/JB089iB07p06329.
  • Cornforth D.H. (2005)—Landslides in Practice—Investigation, Analysis, and Remedial/Preventative Options in Soils, Hoboken, NJ, USA, John Wiley and Sons.
  • Crósta A.P., Sabine C., Taranik J.V. (1998)—Hydrothermal Alteration Mapping at Bodie, California, Using AVIRIS Hyperspectral Data. Remote Sensing of Environment, 65 (3): 309–319. doi: http://dx.doi.org/10.1016/s0034-4257(98)00040-6.
  • Crowley J.K., Vergo N. (1988)—Near-infrared reflectance spectra of mixtures of kaolin-group minerals: Use in clay mineral studies. Clays and Clay minerals, 36 (4): 310–316. doi: http://dx.doi.org/10.1346/CCMN.1988.0360404.
  • Gill J.D., West M.W., Noe D.C., Olsen H.W., McCarty D.K. (1996)—Geologic control of severe expansive clay damage to a subdivision in the Pierre Shale, Southwest Denver Metropolitan area, Colorado. Clays and Clay Minerals, 44 (4): 530–539. doi: http://dx.doi.org/10.1346/CCMN.1996.0440412.
  • Goetz A.F.H., Chabrillat S., Lu Z. (2001)—Field reflectance spectrometry for detection of swelling clays at construction sites. Field Analytical Chemistry and Technology, 5 (3): 143–155. doi: http://dx.doi.org/10.1002/fact.1015.
  • Hancox G.T. (2008)—The 1979 Abbotsford Landslide, Dunedin, New Zealand: a retrospective look at its nature and causes. Lansdslides, 5: 177–188. doi: http://dx.doi.org/10.1007/s10346-007-0097-9.
  • Hartley R.I., Zisserman A. (2004)—Multiple View Geometry in Computer Vision. Cambridge, UK, Cambriadge University Press. doi: http://dx.doi.org/10.1017/CBO9780511811685.
  • Hutchinson J.N. (1961)—A Landslide on a Thin Layer of Quick Clay at Furre, Central Norway. Geotechnique, 11 (2): 69–94. doi: http://dx.doi.org/10.1680/geot.1961.11.2.69.
  • Kruse F.A. (1988)—Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California. Remote Sensing of Environment, 24 (1): 31–51. doi: http://dx.doi.org/10.1016/0034-4257(88)90004-1.
  • Kurz T.H., Buckley S.J., Howell J.A. (2013)—Close-range hyperspectral imaging for geological field studies: Workflow and methods. International Journal of Remote Sensing, 34 (5): 1798–1822. doi: http://dx.doi.org/10.1080/01431161.2012.727039.
  • Kurz T.H., Buckley S.J., Howell J.A., Schneider D. (2011)—Integration of panoramic hyperspectral imaging with terrestrial lidar data. The Photogrammetric Record, 26 (134): 212–228. doi: http://dx.doi.org/10.1111/j.1477-9730.2011.00632.x.
  • Lagacherie P., Baret F., Feret J.-B., Madeira Netto J., Robbez-Masson J.M. (2008)—Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sensing of Environment, 112 (3): 825–835. doi: http://dx.doi.org/10.1016/j.rse.2007.06.014.
  • Martínez-Alonso S., Rustad J.R., Goetz A.F.H. (2002)—Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part II: Main physical factors governing the OH vibrations. American Mineralogist, 87 (8–9): 1224–1234.
  • Murphy R., Schneider S., Monteiro S. (2014)—Mapping Layers of Clay in a Vertical Geological Surface Using Hyperspectral Imagery: Variability in Parameters of SWIR Absorption Features under Different Conditions of Illumination. Remote Sensing, 6 (9): 9104–9129. doi: http://dx.doi.org/10.3390/rs6099104.
  • Murphy R.J. (1995)—The effects of surficial vegetation cover on mineral absorption feature parameters. International Journal of Remote Sensing, 16 (12): 2153–2164. doi: http://dx.doi.org/10.1080/01431169508954548.
  • Murphy R.J., Monteiro S.T. (2013)—Mapping the distribution of ferric iron minerals on a vertical mine face using derivative analysis of hyperspectral imagery (430–970 nm). ISPRS Journal of Photogrammetry and Remote Sensing, 75: 29–39. doi: http://dx.doi.org/10.1016/j.isprsjprs.2012.09.014.
  • Murphy R.J., Monteiro S.T., Schneider S. (2012)—Evaluating Classification Techniques for Mapping Vertical Geology Using Field-Based Hyperspectral Sensors. IEEE Transactions on Geoscience and Remote Sensing, 50 (8): 3066–3080. doi: http://dx.doi.org/10.1109/tgrs.2011.2178419.
  • Savitzky A., Golay M.J.E. (1964)—Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36 (8): 1627–1639. doi: http://dx.doi.org/10.1021/ac60214a047.
  • Smith G.M., Milton E.J. (1999)—The use of the empirical line method to calibrate remotely sensed data to reflectance. International Journal of Remote Sensing, 20 (13): 2653–2662. doi: http://dx.doi.org/10.1080/014311699211994.
  • Taylor Z., Nieto J., Johnson D. (2013)—Automatic calibration of multi-modal sensor systems using a gradient orientation measure. IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan. http://dx.doi.org/10.1109/IR0S.2013.6696516.
  • Zhang Q., Pless R. (2004)—Extrinsic calibration of a camera and laser range finder (improves camera calibration). IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), Sendai, Japan.