1,899
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Geological layers detection and characterisation using high resolution 3D point clouds: example of a box-fold in the Swiss Jura Mountains

, , , , &
Pages 541-568 | Received 13 Nov 2014, Accepted 29 Apr 2015, Published online: 17 Feb 2017

References

  • Abellan A., Jaboyedoff M., Oppikofer T., Vilaplana J.M. (2009)—Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Natural Hazards and Earth System Sciences, 9: 365–372. doi: http://dx.doi.org/10.5194/nhess-9-365-2009.
  • Abellan A., Oppikofer T., Jaboyedoff M., Rosser J., Lim M., Lato M. (2014)—Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39: 80–97. doi: 1 http://dx.doi.org/10.1002/esp.3493.
  • Agisoft (2014)—Agisoft Photoscan software 1.0.4. Available on line at: http://www.agisoft.com/. (last accessed on 12.11.2014).
  • Becker A. (2000)—The Jura Mountains—an anctive foreland fold and thrust belt? Tectonophysics, 321: 381–406. doi: http://dx.doi.org/10.1016/S0040-1951(00)00089-5.
  • Bellian J.A., Kerans C., Jennette D.C. (2005)—Digital outcrop models: applications of terrestrial scanning lidar technology in stratigraphic modelling. Journal of Sedimentary Research, 75 (2): 166–176. doi: http://dx.doi.org/10.2110/jsr.2005.013.
  • Bemis S.P., Micklethwaite S., Turner D., James M.R., Akciz S., Thiele S.T., Bangash H.A. (2014)—Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology, 69: 163–178. doi: http://dx.doi.org/10.1016/j.jsg.2014.10.007.
  • Buckley S.J., Howell J.A., Enge H.D., Kurz T.H. (2008)—Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society, 165: 625–638. doi: http://dx.doi.org/10.1144/0016-76492007-100.
  • Buckley S.J., Schwarz E., Terlaky V. (2010)—Combining aerial photogrammetry and terrestrial lidar for reservoir analog modeling. Photogrammetric Engineering and Remote Sensing, 76: 953–963. doi: http://dx.doi.org/10.14358/PERS.76.8.953.
  • Buckley S.J., Enge H.D., Carlsson C., Howell J. A. (2011)—Terrestrial laser scanning for use in virtual outcrop geology. Photogrammetric Record, 25 (131): 225–239. doi: http://dx.doi.org/10.1111/j.1477-9730.2010.00585.x.
  • Burton D., Dunlap D.B., Wood L.J., Flaig P.P. (2011)—Lidar intensity as a remote sensor of rock properties. Journal of Sedimentary Research, 81: 339–347. doi: http://dx.doi.org/10.2110/jsr.2011.31.
  • Derron M.H., Jaboyedoff M., Pedrazzini A., Michoud C., Villemin T. (2011)—Remote sensing and monitoring techniques for the characterization of rock mass deformation and change detection. In: Rockfall Engineering, Lambert S., Nicot F. (Eds). John Wiley & Sons: New York ISTE Ltd, London, 464 pp.
  • Feng Q., Sjögren P., Stephansson O., Jing L. (2001)—Measuring fracture orientation at exposed rockfaces by using a non-reflector total station. Engineering Geology, 59: 133–146. doi: http://dx.doi.org/10.1016/S0013-7952(00)00070-3.
  • Fonstad M.A, Dietrich J.T., Courville B.C., Jensen J.L., Caronneau P.E. (2013)—Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms, 38: 421–430. doi: http://dx.doi.org/10.1002/esp.3366.
  • Foucault A., Raoult J.-F. (2005)—Dictionnaire de Géologie. 6th Edition, Dunod, Paris, 382 pp.
  • Franceschi M., Teza G., Preto N., Pesci A., Galgaro A., Girardi S. (2009)—Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 64: 522–528. doi: http://dx.doi.org/10.1016/j.isprsjprs.2009.03.003.
  • Franceschi M., Preto N., Hinnov L.A., Huang C., Rusciadelli G. (2011)—Terrestrial laser scanner imaging reveals astronomical forcing in the early Cretaceous of the Tethys realm. Earth and Planetary Science Letters, 305: 359–370. doi: http://dx.doi.org/10.1016/j.epsl.2011.03.017.
  • García-Sellés D., Falivene O., Arbués P., Gratacos O., Tavani S., Muñoz J.A. (2011)—Supervised identification and reconstruction of near-planar geological surfaces from terrestrial laser scanning. Computers & Geosciences, 37: 1584–1594. doi: http://dx.doi.org/10.1016/j.cageo.2011.03.007.
  • Gigli G, Casagli N. (2011)—Semi-automatic extraction of rock mass structural data from high resolution LiDAR point clouds. International Journal of Rock Mechanics and Mining Sciences, 48 (2): 187–198. doi: http://dx.doi.org/10.1016/j.ijrmms.2010.11.009.
  • Gillespie P., Monsen E., Maerten L., Hunt D., Thurmond J., Tuck D. (2010)—Fractures in carbonates: from digital outcrops to mechanical models. In: Martinsen O.J., Pulham A.J., Haughton P., Sullivan M.D. (Eds.), Outcrops Revitalized: Tools, Techniques and Applications, SEPM (Society for Sedimentary Geology).
  • Girardeau-Montaut D. (2014)—Cloud compare, a 3D Point Cloud and Mesh Processing Free Software. EDF R&D, Telecom ParisTech. Available on line at: www.danielgm.net/cc. (last accessed on 07.02.14).
  • Hartzell P., Glennie C., Biber K., Khan S. (2014)—Application of multispectral LiDAR to automated virtual outcrop geology. International Journal of Photogrammetry and Remote Sensing, 88: 147–155. doi: http://dx.doi.org/10.1016/j.isprsjprs.2013.12.004.
  • Hodgetts D. (2013)—Laser scanning and digital outcrop geology in the petroleum industry: A review. Marine and Petroleum Geology, 46: 335–354. doi: http://dx.doi.org/10.1016/j.marpetgeo.2013.02.014.
  • Innovmetric (2011)—PolyWorks: 3D scanner and 3D digitizer software. Innovmetric Software Incorporation. Available on line at: http://www.innovmetric.com/polyworks/3D-scanners.
  • Jaboyedoff M., Metzger R., Oppikofer T., Couture R., Derron M.H., Locat J., Durmel D. (2007)—New insight techniques to analyze rock-slope relief using DEM and 3D-imaging clouds points: COLTOP-3D software. In: Eberhardt E, Stead D, Morrison T (Eds), Rock mechanics: meeting society's challenges and demands. Taylor & Francis, London, pp. 61–68. doi: http://dx.doi.org/10.1201/noe0415444019-c8.
  • Jaboyedoff M., Oppikofer T., Abellan A., Derron M.-H., Loye A., Metzger R. Pedrazzini A. (2012)—Use of LIDAR in landslide investigations: a review. Natural Hazards and Earth System Sciences, 61: 5–28. doi: http://dx.doi.org/10.1007/s11069-010-9634-2.
  • James M.R., Robson S. (2012)—Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research, 117. doi: http://dx.doi.org/10.1029/2011JF002289.
  • James M.R., Robson S. (2014)—Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surface Processes and Landforms, 39 (10): 1413–1420. doi: http://dx.doi.org/10.1002/esp.3609.
  • Jones R.R., Kokkalas S., McCaffrey K.J.W. (2009a)—Quantitative analysis and visualization of nonplanar fault surfaces using terrestrial laser scanning (LIDAR)—The Arkitsa fault, central Greece, as a case study. Geosphere, 5: 465–482.
  • Jones R.R., McCaffrey K.J.W., Clegg P., Wilson R.W., Holliman N.S., Holdsworth R.E., Imber J., Waggotts S. (2009b)—Integration of region-al to outcrop digital data: 3D visualisation of multi-scale geological models. Computers & Geosciences, 35 (1): 4–18. doi: http://dx.doi.org/10.1016/j.cageo.2007.09.007.
  • Kaasalainen S., Jaakkola A., Kaasalainen M., Krooks A., Kukko A. (2011)—Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods. Remote Sensing, 3: 2207–2221. doi: http://dx.doi.org/10.3390/rs3102207.
  • Kemeny J., Turner K., Norton B. (2006)—LIDAR for rock mass characterization: hardware software accuracy and best-practices. In: Laser and Photogrammetric Methods for Rock Face Characterization ARMA, Tonon F., Kottenstette J. (Eds). American Rock Mechanics Association (ARMA): Golden, Colorado, pp. 49–62.
  • Kurazume R., Nishino K., Zhang Z., Ikeuchi K. (2002)—Simultaneous 2D images and 3D geometric model registration for texture mapping utilizing reflectance attribute. Proceedings 5th Asian Conference on Computer Vision. ACCV, 1: 99–106.
  • Kurz T.H., Dewit J., Buckley S.J., Thurmond J.B., W. Hunt D., Swennen R. (2011)—Hyperspectral image analysis of different carbonate lithologies (limestone, karst, hydrothermal dolomites): the Pozalagua Quarry case study (Cantabria, NW Spain). Sedimentology, 59: 623–645. doi: http://dx.doi.org/10.1111/j.1365-3091.2011.01269.x.
  • Lato M., Volgte M. (2012)—Automated mapping of rock discontinuities in 3D LiDAR. International Journal of Rock Mechanics and Mining Sciences, 53: 150–158. doi: http://dx.doi.org/10.1016/j.ijrmms.2012.06.003.
  • Lee K., Tomasso M., Ambrose W.A., Bouroullec R. (2007)—Integration of GPR with stratigraphic and lidar data to investigate behind-the-outcrop 3D geometry of a tidal channel reservoir analog, upper Ferron Sandstone, Utah. The Leading Edge, 26 (8): 994–998. doi: http://dx.doi.org/10.1190/1.2769555.
  • Lowe D. (2004)—Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60: 91–110. doi: http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94.
  • Lu J., Geoghiades A.S., Rushmeier H., Dorsey J., Xu C. (2005)—Synthesis of material drying history: Phenomenon modeling, transferring and rendering. In: Galin E., Poulin P. (Eds.), Proceedings of Eurographics Workshop on Natural Phenomena, Eurographics Association, Aire-La-Ville CH, 7–16.
  • Murphy R.J., Monteiro S.T. (2013)—Mapping the distribution of ferric iron minerals on a vertical mine face using derivative analysis of hyperspectral imagery (430–970 nm). International Journal of Photogrammetry and Remote Sensing, 75: 29–39. doi: http://dx.doi.org/10.1016/j.isprsjprs.2012.09.014.
  • Neuendorf K.K.E., Mehl Jr. J., Jackson K. (2011)—Glossary of Geology. American Geosciences Institute, Alexandria, Virginia, 783 pp.
  • Olariu M.I., Aiken C.L.V., Bhattacharya J.P., Xu X. (2011)—Interpretation of channelized architecture using three-dimensional photo real models, Pennsylvanian deep-water deposits at Big Rock Quarry, Arkansas. Marine and Petroleum Geology, 28: 1157–1170. doi: http://dx.doi.org/10.1016/j.marpetgeo.2010.12.007.
  • Pearce M.A., Jones R.R., Smith S.A.F. McCaffrey K.J.W. (2011)—Quantification of fold curvature and fracturing using terrestrial laser scanning. AAPG Bulletin, 95 (5): 771–794. doi: http://dx.doi.org/10.1306/11051010026.
  • Penasa L., Franceschi M., Preto N., Teza G., Polito V. (2014)—Integration of intensity textures and local geometry descriptors from Terrestrial Laser Scanning to map chert in outcrops. ISPRS Journal of Photogrammetry and Remote Sensing, 93: 88–97. doi: http://dx.doi.org/10.1016/j.isprsjprs.2014.04.003.
  • Pesci A., Teza G. (2008)—Effects of surface irregularities on intensity data from laser scanning: An experimental approach. Annals of Geophysics, 51 (5–6): 839–848.
  • Pfeifer N., Höfle B., Briese C., Rutzinger M., Haring A. (2008)—Analysis of the backscattered energy in terrestrial laser scanning data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII (B5): 1045–1051.
  • Pringle J.K., Howell J.A., Hodgetts D., Westerman A.R., Hodgson D.M. (2006)—Virtual outcrop models of petroleum reservoir analogues: a review of the current state-of-the-art. First Break, 24: 33–42. doi: http://dx.doi.org/10.3997/1365-2397.2006005.
  • Ramsay J.G. (1967)—Folding and Fracturing of Rocks. Mc Gray-Hill, New York.
  • Reif D., Grasemann B., Faber R.H. (2011)—Quantitative structural analysis using remote sensing data: Kurdistan, northeast Iraq. AAPG Bulletin, 95 (6): 941–956. doi: http://dx.doi.org/10.1306/11151010112.
  • Reshetyuk T. (2006)—Investigation of the influence of surface reflectance on the measurements with the terrestrial laser scanner Leica HDS 3000. Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 131 (2): 96–103.
  • Reyes R., Bellian J.A. (2009)—Using statistical methods to correct LiDAR intensity from geological outcrops. ASPRS/MAPPS 2009 Fall Conference, November 16–19 2009, San Antonio, Texas.
  • Riquelme A.J., Abellan A., Tomas R., Jaboyedoff M. (2014)—A new approach for semiautomatic rock massjoints recognition from 3D point clouds. Computer and Geosciences, 68: 38–52. doi: http://dx.doi.org/10.1016/j.cageo.2014.03.014.
  • Rotevatn A., Buckley S.J., Howell J.A., Fossen H. (2009)—Overlapping faults and their effect on fluid flow in different reservoir types: a LIDAR-based outcrop modeling and flow simulation study. AAPG Bulletin, 93: 407–427. doi: http://dx.doi.org/10.1306/09300807092.
  • Sommaruga A. (1997)—Geology of the central Jura and the Molasse basin: New insights into an evaporate-based foreland fold and thrust belt. PhD thesis, University of Neuchätel, 195 pp.
  • Slob S., Hack R. (2004)—3D terrestrial laser scanning as a new field measurement and monitoring technique. Engineering geology for infrastructure planning in Europe: a European perspective, Lectures Notes in Earth Sciences. Springer, 104: 179–189.
  • Snavely N. (2008)—Scene reconstruction and visualization from Internet photo collections. PhD thesis, University of Washington, USA.
  • Spetsakis M.E., Aloimonos Y. (1991)—A multi-frame approach to visual motion perception. International Journal of Computer Vision, 6: 245–255. doi: http://dx.doi.org/10.1007/BF00115698.
  • Szeliski R., Kang S.B. (1994)—Recovering 3-D shape and motion from image streams using nonlinear least squares. Journal of Visual Communication and Image Representation, 5: 10–28. doi: http://dx.doi.org/10.1006/jvci.1994.1002.
  • Turner D., Lucieer A., Watson C. (2012)—An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) Point clouds. Remote Sensing, 4: 1392–1410. doi: http://dx.doi.org/10.3390/rs4051392.
  • Ullman S. (1979)—The interpretation of structure from motion. Proceedings Royal Society London, 203 (B): 405–426. doi: http://dx.doi.org/10.1098/rspb.1979.0006.
  • Vain A., Kaasalainen S. (2011)—Correcting Airborne Laser Scanning Intensity Data. In: Laser Scanning, Theory and Applications, Chau-Chang W. (Ed.). doi: http://dx.doi.org/10.5772/15026.
  • Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J., Reynold J.M. (2012)—Structure-from-Motion photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179: 300–314. doi: http://dx.doi.org/10.1016/j.geomorph.2012.08.021.
  • Wilson P., Gawthorpe R.L., Hodgetts D., Rarity F., Sharp I.R. (2009a)—Geometry and architecture of faults in a syn-rift normal fault array: the Nukhul half-graben, Suez rift, Egypt. Journal of Structural Geology, 31: 759–775. doi: http://dx.doi.org/10.1016/j.jsg.2009.04.005.
  • Wilson P., Hodgetts D., Rarity F., Gawthorpe R.L., Sharp I.R. (2009b)—Structural geology and 4D evolution of a half-graben: new digital outcrop modelling techniques applied to the Nukhul half-graben, Suez rift, Egypt. Journal of Structural Geology, 31: 328–345. doi: http://dx.doi.org/10.1016/j.jsg.2008.11.013.