1,059
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Evaluating EO1-Hyperion capability for mapping conifer and broadleaved forests

, &
Pages 157-169 | Received 20 Jan 2016, Accepted 20 Mar 2016, Published online: 17 Feb 2017

References

  • Breiman L. (2001)—Random Forests. Machine Learning, 45: 5–32. doi: http://dx.doi.org/10.1023/A:1010933404324.
  • Burges C.J.C. (1998)—A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2: 121–167. doi: http://dx.doi.org/10.1023/A:1009715923555.
  • Chan J.C.W., Palinckx D. (2008)—Evaluation of Random Forest and Adaboost treebased ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment, 112: 2999–3011. doi: http://dx.doi.org/10.1016/j.rse.2008.02.011.
  • Clark M.L., Roberts D.A., Clark D.B. (2005)—Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sensing of Environment, 96: 375–398. doi: http://dx.doi.org/10.1016/j.rse.2005.03.009.
  • Congalton R.G. (1991)—A Review of Assessing the Accuracy of Classification of Remotely Sensed Data. Remote Sensing of Environment, 37: 35–46. doi: http://dx.doi.org/10.1016/0034-4257(91)90048-B.
  • Corona P. (2016)—Consolidating new paradigms in large-scale monitoring and assessment of forest ecosystems. Environmental Research, 144: 8–14. doi: http://dx.doi.org/10.1016/j.envres.2015.10.017.
  • Corona P., Fattorini L., Pagliarella M.C. (2015)—Sampling strategies for estimating forest cover from remote sensing-based two-stage inventories. Forest Ecosystems, 2: 18. doi: http://dx.doi.org/10.1186/s40663-015-0042-7.
  • Dalponte M., Bruzzone L., Vescovo L., Gianelle D. (2009)—The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas. Remote Sensing of Environment, 113: 2345–2355. doi: http://dx.doi.org/10.1016/j.rse.2009.06.013.
  • Erbek F.S., Ozkan C., Taberner M. (2004)—Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities. International Journal of Remote Sensing, 25: 1733–1748. doi: http://dx.doi.org/10.1080/0143116031000150077.
  • Friedman J.H. (1991)—Multivariate Adaptive Regression Splines. The Annals of Statistics, 19 (1): 1–141. doi: http://dx.doi.org/10.1214/aos/1176347963.
  • George R., Padalia H., Kushwaha S.P.S. (2014)—Forest tree species discrimination in western Himalaya using EO-1 Hyperion. International Journal of Applied Earth Observation and Geoinformation, 28: 140–149. doi: http://dx.doi.org/10.1016/j.jag.2013.11.011.
  • Green P.E., Carroll J.D. (1978)—Analyzing multivariate data. Hinsdale, IL: Dryden Press.
  • ITT (2008)—ENVI Version 4.8. ITT Industries, Inc., Boulder, CO.
  • Kavzoglu T., Colkesen I. (2009)—A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11: 352–359. doi: http://dx.doi.org/10.1016/j.jag.2009.06.002.
  • Lawrence R.L., Bunn A., Powell S., Zmabon M. (2004)—Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment, 90: 331–336. doi: http://dx.doi.org/10.1016/).rse.2004.01.007.
  • Lawrence R.L., Moran C.J. (2015)—The America-View classification methods accuracy comparison project: A rigorous approach for model selection. Remote Sensing of Environment, 170: 115–120. doi: http://dx.doi.org/10.1016/j.rse.2015.09.008.
  • Leisch F., Weingessel A., Hornik K., Dimitriadou E., Meyer D. (2012)—e1071: Misc Functions of the Department of Statistics. TU Wien.
  • Li C., Wang J., Wang L., Hu L., Gong P. (2014)—Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sensing, 6: 964–983. doi: http://dx.doi.org/10.3390/rs6020964.
  • Liaw A., Wiener M. (2002)—Classification and Regression by randomForest. R News, 2 (3): 18–22.
  • Lu D., Weng Q. (2007)—A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28 (5): 823–870. doi: http://dx.doi.org/10.1080/01431160600746456.
  • Maselli F., Moriondo M., Chiesi M., Chirici G., Puletti N., Barbati A., Corona P. (2009)—Evaluating the effects of environmental changes on the gross primary production of Italian forests. Remote Sensing, 1 (4): 1108–1124. doi: http://dx.doi.org/10.3390/rs1041108.
  • Menéndeza L.A., de Cos Juez F.J., Lasheras F.S., Riesgo J.A.A. (2010)—Artificial neural networks applied to cancer detection in a breast screening programme. Mathematical and Computer Modelling, 52 (2010): 983–991. doi: http://dx.doi.org/10.1016/j.mcm.2010.03.019.
  • Milborrow S. (2014)—rpart.plot: Plot rpart models. An Enhanced Version of plot.rpart. Comprehensive R Archive Network. Available online at: http://cran.r-project.org/web/packages/rpart.plot/rpart.plot.pdf.
  • Melgani F., Bruzzone L. (2004)—Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42: 1778–1790. doi: http://dx.doi.org/10.1109/TGRS.2004.831865.
  • Mountrakis G., Im J., Ogole C. (2011)—Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66: 247–259. doi: http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001.
  • Paneque-Gàlvez J., Mas J.-F., Moré G., Cristòbal J., Orta-Martinez M., Luz A.C., Guèze M., Macìa M.J., Reyes-Garcì V. (2013)—Enhanced land use/cover classification of heterogeneous tropical landscapes using support vector machines and textural homogeneity. International Journal of Applied Earth Observation and Geoinformation, 23: 372–383. doi: http://dx.doi.org/10.1016/j.jag.2012.10.007.
  • Petropoulos G.P., Arvanitis K., Sigrimis N. (2012)—Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping. Expert Systems with Application, 39: 3800–3809. doi: http://dx.doi.org/10.1016/j.eswa.2011.09.083.
  • Pignatti S., Cavalli R.M., Cuomo V., Fusilli L., Pascucci S., Poscolieri M., Santini F. (2009)—Evaluating Hyperion capability for land cover mapping in a fragmented ecosystem: Pollino National Park, Italy. Remote Sensing of Environment, 113: 622–634. doi: http://dx.doi.org/10.1016/j.rse.2008.11.006.
  • R Core Team (2014)—R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at: http://www.R-project.org/.
  • Thenkabail S.P., Enclona E.A., Ashton M., Van Der Meer B. (2004)—Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sensing of Environment, 91 (3–4): 354–376. doi: http://dx.doi.org/10.1016/j.rse.2004.03.013.
  • USGS (2008)—EO1 User Guide. Available online at: http://eol.usgs.gov/documents/EO1userguidev2pt320030715UC.pdf
  • Van Niel T., McVicar T., Datt B. (2005)—On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification. Remote Sensing of Environment, 98: 468–480. doi: http://dx.doi.org/10.1016/j.rse.2005.08.011.
  • Vyas D., Krishnayya N.S.R., Manjunath K.R., Ray S.S., Panigrahy S. (2011)—Evaluation of classifiers for processing Hyperion (EO-1) data of tropical vegetation. International Journal of Applied Earth Observation and Geoinformation, 13: 228–235. doi: http://dx.doi.org/10.1016/j.jag.2010.11.007.
  • White J.C., Gómez C., Wulder M.A., Coops N.C. (2010)—Characterizing temperate forest structural and spectral diversity with Hyperion EO-1 data. Remote Sensing of Environment, 114: 1576–1589. doi: http://dx.doi.org/10.1016/j.rse.2010.02.012.