676
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

An intensity recovery algorithm (IRA) for minimizing the edge effect of LIDAR data

, , , , , , & show all
Pages 301-315 | Received 14 Dec 2015, Accepted 18 May 2016, Published online: 17 Feb 2017

References

  • Bordin F., Teixeira E.C., Rolim S.B., Tognoli F.M., Souza C.N., Veronez M.R. (2013)—Analysis of the influence of distance on data acquisition intensity forestry targets by a LIDAR technique with terrestrial laser scanner. International Society of Photogrammetry and Remote Sensing, XL-2/W1: 99–103. doi: http://dx.doi.org/10.5194/isprsarchives-XL-2-W1-99-2013.
  • Burton D., Dunlap D.B., Wood L.J., Flaig P.P. (2011)—Lidar intensity as a remote sensor of rock properties. Journal of Sedimentary Research, 81: 339–347. doi: http://dx.doi.org/10.2110/jsr.2011.31.
  • Colwell R.N. (1983)—Manual of Remote Sensing—Interpretation and applications. American Society of Photogrammetry and Remote Sensing, Falls Church, pp. 2440.
  • Eitel J.U., Vierling L.A., Long D.S. (2010)—Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner. Remote Sensing of Environment, 114 (10): 2229–2237. doi: http://dx.doi.org/10.1016/j.rse.2010.04.025.
  • Gan G., Ma C., Wu J. (2007)—Data clustering: theory, algorithms and applications. American Statistical Association and the Society of Industrial and Applied Mathematics, Philadelphia, pp. 455. doi: http://dx.doi.org/10.1137/1.9780898718348.
  • Inocencio L.C., Veronez M.R., Tognoli F.M., Souza M.K., Silva R.M., Junior L.G.S., Silveira C.L. (2014)—Spectral pattern classification in LIDAR data for rock identification in outcrops. The Scientific World Journal, 2014: 1–10. doi: http://dx.doi.org/10.1155/2014/539029.
  • Kaasalainen S., Krooks A., Kaartinen H. (2009)—Radiometric calibration of terrestrial laser scanners with external reference targets. Remote Sensing, 1: 144–158. doi: http://dx.doi.org/10.3390/rs1030144.
  • Kaasalainen S., Jaakkola A., Kaasalainen M., Krooks A., Kukko A. (2011)—Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods. Remote Sensing, 3: 2207–2221. doi: http://dx.doi.org/10.3390/rs3102207.
  • Lindenbergh R., Pietrzyk P. (2015)—Change detection and deformation analysis using static and mobile laser scanning. Applied Geomatics, 7: 65–74. doi: http://dx.doi.org/10.1007/s12518-014-0151-y.
  • Longoni L., Papini M., Brambilla D., Barazzetti L., Roncoroni F., Scaioni M., Ivanov V.I. (2016)—Monitoring Riverbank Erosion in Mountain Catchments Using Terrestrial Laser Scanning. Remote Sensing, 8 (3): 241. doi: http://dx.doi.org/10.3390/rs8030241.
  • MacQueen J.B. (1967)—Some methods for classification and analysis of multivariate observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, pp. 281–297.
  • Pavi S., Gorkos P., Bordin F., Veronez M., Kulakowski M. (2015)—Laser scanner in identification of pathological manifestations in concrete. In: Multi-Spam Large Bridges, Pacheco P., Magalhães F. (Eds), Balkema, Rotterdam, pp. 323–324. doi: http://dx.doi.org/10.1201/b18567-112.
  • Pirotti F., Guarnieri A., Vettore A. (2013)—State of the art of ground and aerial laser scanning technologies for high-resolution topography of the earth surface. European Journal of Remote Sensing, 46: 66–78. doi: http://dx.doi.org/10.5721/EuJRS20134605.
  • Popescu S.C. (2011)—Lidar Remote Sensing. Advances in Environmental Remote Sensing, Sensors, Algorithms and Applications, Boca Raton, pp. 57–84. doi: http://dx.doi.org/10.1201/b10599-5.
  • Samet H. (2006)—Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, 1024 p.
  • Scaioni M., Roncella R., Alba M.I. (2013)—Change Detection and Deformation Analysis in Point Clouds: Application to Rock Face Monitoring. Photogrammetric Engineering & Remote Sensing,79 (5): 441–456. doi: http://dx.doi.org/10.14358/PERS.79.5.441.
  • Seielstad C., Stonesifer C., Rowell E., Queen L. (2011)—Deriving fuel mass by size class in douglas-fir (Pseudotsuga menziesii) using terrestrial laser scanning. Remote Sensing, 3: 1691–1709. doi: http://dx.doi.org/10.3390/rs3081691.
  • Shan J., Toth C.K. (2009)—Topographic Laser Scanning and Ranging—Principles and Processing. Taylor and Francis Group, Boca Raton, pp. 616.
  • Sheng W., Okamoto A., Tanaka S. (2015)—Visual Point-based Analysis of Laser-scanned Historical Structures. International Conference on Culture and Computing, Japan, pp. 47–53. doi: http://dx.doi.org/10.1109/culture.and.computing.2015.11.
  • Vosselman G., Maas H.G. (2010)—Airborne and terrestrial laser scanning. Taylor and Francis Group, Boca Raton, pp. 320.