3,036
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Assessing in-season crop classification performance using satellite data: a test case in Northern Italy

, , , , &
Pages 361-380 | Received 07 Mar 2016, Accepted 21 Jun 2016, Published online: 17 Feb 2017

References

  • Boschetti M., Nutini F., Manfron G., Brivio P.A., Nelson A. (2014)—Comparative Analysis of Normalised Difference Spectral Indices Derived from MODIS for Detecting Surface Water in Flooded Rice Cropping Systems. PloS one, 9 (2): e88741. doi: http://dx.doi.org/10.1371/journal.pone.0088741.
  • Congalton R.G. (1991)—A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37 (1): 35–46. doi: http://dx.doi.org/10.1016/0034-4257(91)90048-B.
  • Conrad C., Dech S., Dubovyk O., Fritsch S., Klein D., Löw F. Zeidler J. (2014)—Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Computers and Electronics in Agriculture, 103: 63–74. doi: http://dx.doi.org/10.1016/j.compag.2014.02.003.
  • De Wit A.J.W., Clevers J.G.P.W. (2004)—Efficiency and accuracy of per-field classification for operational crop mapping. International Journal of Remote Sensing, 25 (20): 40914112. doi: http://dx.doi.org/10.1080/01431160310001619580.
  • Drusch M., Del Bello U., Carlier S., Colin O., Fernandez V., Gascon F., Hoersch B., Isola C., Laberinti P., Martimort P., Meygret A., Spoto F., Sy O., Marchese F., Bargellini P. (2012)—Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120: 25–36. doi: http://dx.doi.org/10.1016/j.rse.2011.11.026.
  • Duveiller G., Defourny P. (2010)—A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing. Remote Sensing of Environment, 114 (11): 2637–2650. doi: http://dx.doi.org/10.1016/j.rse.2010.06.001.
  • Foerster S., Kaden K., Foerster M., Itzerott S. (2012)—Crop type mapping using spectral-temporal profiles and phenological information. Computers and Electronics in Agriculture, 89: 30–40. doi: http://dx.doi.org/10.1016/j.compag.2012.07.015.
  • Foody G.M. (2002)—Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80 (1): 185–201. doi: http://dx.doi.org/10.1016/S0034-4257(01)00295-4.
  • Gamon J.A., Penuelas J., Field C.B. (1992)—A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41 (1): 35–44. doi: http://dx.doi.org/10.1016/0034-4257(92)90059-S.
  • Gamon J.A., Surfus J.S. (1999)—Assessing Leaf Pigment Content and Activity with a Reflectometer. New Phytologist, 143: 105–117. doi: http://dx.doi.org/10.1046/j.1469-8137.1999.00424.x.
  • Giuca S., Giannini M.S., Nebuloni A., Pretolani R., Pieri R., Cagliero R., Marras F., Gay G. (2014)—Lombardy agriculture in figures—2013. National Institute of Agricultural Economics (INEA), 156 pp. Available online at: http://dspace.inea.it/bitstream/inea/846/1/Lombardy_agric_figures_2013.pdf.
  • Gitelson A.A., Merzlyak M.N. (1996)—Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 148 (3): 494–500. doi: http://dx.doi.org/10.1016/S0176-1617(96)80284-7.
  • Hartfield K.A., Marsh S.E., Kirk C.D., Carrière Y. (2013)—Contemporary and historical classification of crop types in Arizona. International Journal of Remote Sensing, 34 (17): 6024–6036. doi: http://dx.doi.org/10.1080/01431161.2013.793861.
  • Huete A., Justice C., Liu H. (1994)—Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment, 49 (3): 224–234. doi: http://dx.doi.org/10.1016/0034-4257(94)90018-3.
  • Huete A.R., Liu H., Batchily K., van Leeuwen W. (1997)—A comparison ofvegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59: 440–451. doi: http://dx.doi.org/10.1016/S0034-4257(96)00112-5.
  • Hubert-Moy L., Cotonnec A., Le Du L., Chardin A., Perez P. (2001)—A comparison of parametric classification procedures of remotely sensed data applied on different landscape units. Remote Sensing of Environment, 75: 174–187. doi: http://dx.doi.org/10.1016/S0034-4257(00)00165-6.
  • Kruse F. A., Lefkoff A.B., Boardman J.B., Heidebrecht K.B., Shapiro A.T., Barloon P.J., Goetz A.F.H. (1993)—The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44 (2): 145–163. doi: http://dx.doi.org/10.1016/0034-4257(93)90013-N.
  • Irons J.R., Dwyer J.L., Barsi J.A. (2012)—The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sensing of Environment, 122: 11–21. doi: http://dx.doi.org/10.1016/j.rse.2011.08.026.
  • Lunetta R.S., Knight J.F., Ediriwickrema J., Lyon J.G., Worthy L.D. (2006)—Landcover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment, 105 (2): 142–154. doi: http://dx.doi.org/10.1016/j.rse.2006.06.018.
  • Mo X., Liu S., Lin Z., Xu Y., Xiang Y., McVicar T.R. (2005)—Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecological Modelling, 183 (2): 301–322. doi: http://dx.doi.org/10.1016/j.ecolmodel.2004.07.032.
  • Murthy C.S., Raju P.V., Badrinath K.V.S. (2003)—Classification of wheat crop with multitemporal images: performance of maximum likelihood and artificial neural networks, International Journal of Remote Sensing, 24 (23): 4871–4890. doi: http://dx.doi.org/10.1080/0143116031000070490.
  • Nutini F., Boschetti M., Brivio P.A., Bocchi S., Antoninetti M. (2013)—Land-use and land-cover change detection in a semi-arid area of Niger using multi-temporal analysis of Landsat images. International Journal of Remote Sensing, 34 (13): 4769–4790. doi: http://dx.doi.org/10.1080/01431161.2013.781702.
  • Odenweller J.B., Johnson K.I. (1984)—Crop identification using Landsat temporal-spectral profiles. Remote Sensing of Environment, 14 (1): 39–54. doi: http://dx.doi.org/10.1016/0034-4257(84)90006-3.
  • Ok A.O., Akar O., Gungor O. (2012)—Evaluation of random forest method for agricultural crop classification. European Journal of Remote Sensing, 45 (3): 421–432. doi: http://dx.doi.org/10.5721/EuJRS20124535.
  • Ortiz M.J., Formaggio A.R., Epiphanio J.C.N. (1997)—Classification of croplands through integration of remote sensing, GIS, and historical database. International Journal of Remote Sensing, 18 (1): 95–105. doi: http://dx.doi.org/10.1080/014311697219295.
  • Pohl C., Van Genderen J.L. (1998)—Multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 19 (5): 823–854. doi: http://dx.doi.org/10.1080/014311698215748.
  • Reichstein M., Ciais P., Papale D., Valentini R., Running S., Viovy N., Cramer W., Granier A., Ogée J., Allard V., Aubinet M., Bernhofer C., Buchmann N., Carrara A., Grunwald T., Heimann M., Heinesch B., Knohl A., Kutsch W., Loustau D., Manca G., Matteucci G., Miglietta F., Ourcival J.M., Pilegaard K., Pumpanen J., Rambal S., Schaphoff S., Seufert G., Soussana J.-F., Sanz M.-J., Vesala T., Zhao M. (2007)—Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 13 (3): 634–651. doi: http://dx.doi.org/10.1111/j.1365-2486.2006.01224.x.
  • Richards J.A. (1999)—Remote Sensing Digital Image Analysis. Springer-Verlag, Berlin, p. 240.
  • Richter R., Schläpfer D. (2011)—Atmospheric / Topographic Correction for Satellite Imagery. DLR report DLR-IB 565–02/11, Wessling (D), pp 202. Available online at: http://atcor.com/pdf/atcor3_manual.pdf.
  • Rost S., Gerten D., Bondeau A., Lucht W., Rohwer J., Schaphoff S. (2008)—Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research, 44 (9): W09405. doi: http://dx.doi.org/10.1029/2007WR006331.
  • South S., Qi J., Lusch D.P. (2004)—Optimal classification methods for mapping agricultural tillage practices. Remote Sensing of Environment, 91 (1): 90–97. doi: http://dx.doi.org/10.1016/j.rse.2004.03.001.
  • Van Niel T.G., McVicar T.R. (2004)—Determining temporal windows for crop discrimination with remote sensing: a case study in south-eastern Australia. Computers and Electronics in Agriculture, 45 (1): 91–108. doi: http://dx.doi.org/10.1016/j.compag.2004.06.003.
  • Villa P., Bresciani M., Braga F., Bolpagni R. (2014)—Comparative assessment of broadband Vegetation Indices over aquatic vegetation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7 (7): 3117–3127. doi: http://dx.doi.org/10.1109/JSTARS.2014.2315718.
  • Villa P., Stroppiana D., Fontanelli G., Azar R., Brivio P.A. (2015)—In-season mapping of crop type with optical and X-band SAR data: a classification tree approach using synoptic seasonal features. Remote Sensing, 7 (10): 12859–12886. doi: http://dx.doi.org/10.3390/rs71012859.
  • Wardlow B.D., Egbert S.L. (2008)—Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the US Central Great Plains. Remote Sensing of Environment, 112 (3): 1096–1116. doi: http://dx.doi.org/10.1016/j.rse.2007.07.019.
  • Wriedt G., Van der Velde M., Aloe A., Bouraoui F. (2009)—Estimating irrigation water requirements in Europe. Journal of Hydrology, 373 (3): 527–544. doi: http://dx.doi.org/10.1016/j.jhydrol.2009.05.018.
  • Xiao X., Boles S., Liu J., Zhuang D., Frolking S., Li C., Salas L., Moore B. (2005)—Mappingpaddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 95 (4): 480–492. doi: http://dx.doi.org/10.1016/j.jhydrol.2009.05.018.
  • Yang C., Everitt J.H., Murden D. (2011)—Evaluating high resolution SPOT 5 satellite imagery for crop identification. Computers and Electronics in Agriculture, 75 (2): 347–354. doi: http://dx.doi.org/10.1016/j.compag.2010.12.012.