2,498
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Downscaling Landsat Land Surface Temperature over the urban area of Florence

, , &
Pages 553-569 | Received 22 Mar 2016, Accepted 28 Jul 2016, Published online: 17 Feb 2017

References

  • Agam N., Kustas W.P., Anderson M.C., Li F., Neale C.M. (2007)—A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sensing of Environment, 107 (4): 545–558. doi: http://dx.doi.org/10.1016/j.rse.2006.10.006.
  • Anniballe R., Bonafoni S., Pichierri M. (2014)—Spatial and temporal trends of the surface and air heat island over Milan using Modis data. Remote Sensing of Environment, 150: 163–171. doi: http://dx.doi.org/10.1016/j.rse.2014.05.005.
  • Atkinson P.M. (2013)—Downscaling in remote sensing. International Journal of Applied Earth Observation and Geoinformation, 22: 106–114. doi: http://dx.doi.org/10.1016/j.jag.2012.04.012.
  • Barsi J.A., Barker J.L., Schott J.R. (2003)—An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France: 3014–3016. doi: http://dx.doi.org/10.1109/IGARSS.2003.1294665.
  • Barsi J.A., Schott J.R., Palluconi F.D., Hook S.J. (2005)—Validation of a web-based atmospheric correction tool for single thermal band instruments. In: SPIE, Bellingham, WA, 5882. doi: http://dx.doi.org/10.1117/12.619990.
  • Bonafoni S. (2015)—The spectral index utility for summer urban heating analysis. Journal of Applied Remote Sensing, 9 (1): 1–16. doi: http://dx.doi.org/10.1117/1.JRS.9.096030.
  • Bonafoni S. (2016)—Downscaling of Landsat and MODIS Land Surface Temperature over the heterogeneous urban area of Milan. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (5): 2019–2027. doi: http://dx.doi.org/10.1109/JSTARS.2016.2514367.
  • Borgogno-Mondino E., Lessio A., Gomarasca M.A. (2016)—A fast operative method for NDVI uncertainty estimation and its role in vegetation analysis. European Journal of Remote Sensing, 49: 137–156. doi: http://dx.doi.org/10.5721/EuJRS20164908.
  • Chander G., Markham B.L., Helder D.L. (2009)—Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113 (5): 893–903. doi: http://dx.doi.org/10.1016/j.rse.2009.01.007.
  • Chavez P.S. (1996)—Image-based atmospheric corrections-revisited and improved. Photogrammetric engineering and remote sensing, 62 (9): 1025–1036. Available online at: http://www.unc.edu/courses/2008spring/geog/577/001/www/Chavez96-PERS.pdf.
  • Coll C., Galve J.M., Sanchez J.M., Caselles V. (2010)—Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Transaction on Geoscience and Remote Sensing, 48 (1): 547–555. doi: http://dx.doi.org/10.1109/TGRS.2009.2024934.
  • Cui L., Li G., Ren H., He L., Liao H., Ouyang N., Zhang Y. (2014)—Assessment of atmospheric correction methods for historical Landsat TM images in the coastal zone: A case study in Jiangsu, China. European Journal of Remote Sensing, 47: 701–716. doi: http://dx.doi.org/10.5721/EuJRS20144740.
  • Dominguez A., Kleissl J., Luvall J.C., Rickman D.L. (2011)—High-resolution urban thermal sharpener (HUTS). Remote Sensing of Environment, 115 (7): 1772–1780. doi: http://dx.doi.org/10.1016/j.rse.2011.03.008.
  • Gioli B., Miglietta F., Vaccari F.P., Zaldei A., De Martino B. (2006)—The Sky Arrow ERA, an innovative airborne platform to monitor mass, momentum and energy exchange of ecosystems. Annals of Geophysics, 49: 109–116. doi: http://dx.doi.org/10.4401/ag-3159.
  • Gluch R., Quattrochi D.A., Luvall J.C. (2006)—A multi-scale approach to urban thermal analysis. Remote Sensing of Environment, 104: 123–132. doi: http://dx.doi.org/10.1016/j.rse.2006.01.025.
  • Jimenez-Munoz J.C., Cristobal J., Sobrino J.A., Soria G., Ninyerola M., Pons X. (2009)—Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE Transaction on Geoscience and Remote Sensing, 47 (1): 339–349. doi: http://dx.doi.org/10.1109/TGRS.2008.2007125.
  • Jimenez-Munoz J.M., Sobrino J.A., Gillepse A.R. (2012)—Surface emissivity retrieval from airborne Hyperspectral scanner data: insights on atmospheric correction and noise removal. IEEE Geoscience and Remote Sensing Letters, 9 (12): 180–184. doi: http://dx.doi.org/10.1109/LGRS.2011.2163699.
  • Hancock R.N., Torgesen C.E, Cherkauer K.A., Gillespie A.R, Tockner K., Faux R.N., Tan J. (2012)—Thermal Infrared remote sensing of water temperature in riverine landscapes. Fluvial Remote Sensing for Science and Managenment: 85–113, Carbonneau P.E., Piegay J. (Eds). Available online at: http://faculty.washington.edu/cet6/pub/Handcock_etal_2012.pdf.
  • Hartz D.A., Prashad L., Hedquist B.C., Golden J., Brazel A.J. (2006)—Linking satellite images and hand-held infrared thermography to observed neighborhood climate conditions. Remote Sensing of Environment, 104: 190–200. doi: http://dx.doi.org/10.1016/j.rse.2005.12.019.
  • Inamdar A.K., French A., Hook S., Vaughan G., Luckett W. (2008)—Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States. Journal of Geophysical Research, 113 (D7): 1–18. doi: http://dx.doi.org/10.1029/2007JD009048.
  • Kottmeier C., Biegert C., Corsmeier U. (2007)—Effects of Urban Land Use on Surface Temperature in Berlin: Case Study. Journal of Urban Planning and Development, 133 (2): 128–137. doi: http://dx.doi.org/10.1061/(ASCE)0733-9488(2007)133:2(128).
  • Kustas W.P., Norman J.M., Anderson M.C., French A.N. (2003)—Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship. Remote Sensing of Environment, 85: 429–440. doi: http://dx.doi.org/10.1016/S0034-4257(03)00036-1.
  • Lee H.Y. (1993)—An application of NOAA AVHRR thermal data to the study of urban heat islands. Atmospheric Environment, 27 (1): 1–13, doi: http://dx.doi.org/10.1016/09571272(93)90041-4.
  • Li Y., Zhang H., Kainz W. (2012)—Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data. International Journal of Applied Earth Observation and Geoinformation, 19: 127–138. doi: http://dx.doi.org/10.1016/j.jag.2012.05.001.
  • Lo C.P., Quattrochi D.A, Luvall J.C. (1997)—Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. International Journal of Remote Sensing, 18: 287–304. doi: http://dx.doi.org/10.1080/014311697219079.
  • Lu D., Weng Q. (2006)—Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. Remote Sensing of Environment, 104: 157–167. doi: http://dx.doi.org/10.1016/j.rse.2005.11.015.
  • Mitraka Z., Chrysoulakis N., Kamarianakis Y., Partsinevelos P., Tsouchlaraki A. (2012)—Improving the estimation of urban surface emissivity based on sub-pixel classification of high resolution satellite imagery. Remote Sensing of Environment, 117: 125–134. doi: http://dx.doi.org/10.1016/j.rse.2011.06.025.
  • Mukherjee S., Joshi P.K., Garg R.D. (2015)—Regression-Kriging technique to downscale satellite-derived land surface temperature in heterogeneous landscape. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3): 1245–1250. doi: http://dx.doi.org/10.1109/JSTARS.2015.2396032.
  • National Aeronautics and Space Administration (NASA) (1999)—MODIS UCSB emissivity library. Available online at: http://www.icess.ucsb.edu/modis/EMIS/html/em.html.
  • Oke T.R. (1973)—City size and the urban heat island. Atmospheric Environment, 7: 769–779. doi: http://dx.doi.org/10.1016/0004-6981(73)90140-6.
  • Oke T.R. (1982)—The energetic basis of the Urban Heat Island. Quarterly Journal of the Royal Meteorological Society, 108: 1–24. doi: http://dx.doi.org/10.1002/qj.49710845502.
  • Pu R., Gong P., Michishita R., Sasagawa T. (2006)—Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval. Remote Sensing of Environment, 104: 211–225. doi: http://dx.doi.org/10.1016/j.rse.2005.09.022.
  • Saaaroni H., Ben-Dor E., Bitan A., Potcher O. (2000)—Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landscape and Urban Planning, 48: 1–18. doi: http://dx.doi.org/10.1016/S0169-2046(99)00075-4.
  • Sobrino J.A., Jimenez-Munoz J.C., Paolini L. (2004)—Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90: 434–440. doi: http://dx.doi.org/10.1016/j.rse.2004.02.003.
  • Sobrino J.A., Oltra-Carrió R., Sòria G., Bianchi R., Paganini M. (2012)—Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sensing of Environment, 117: 50–56. doi: http://dx.doi.org/10.1016/j.rse.2011.04.042.
  • Stathopoulou M., Cartalis, C. (2009)—Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation. Remote Sensing of Environment, 113: 2592–2605. doi: http://dx.doi.org/10.1016/j.rse.2009.07.017.
  • Streutker D.R. (2003)—Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sensing of Environment, 85 (3): 282–289. doi: http://dx.doi.org/10.1016/S0034-4257(03)00007-5.
  • Voogt J.A., Oke T.R. (1998)—Effects of urban surface geometry on remotely-sensed surface temperature. International Journal of Remote Sensing, 19: 895–920. doi: http://dx.doi.org/10.1080/014311698215784.
  • Voogt J.A. (2004)—Urban Heat Island: Hotter Cities. ActionBioscience.org. Available online at: http://www.actionbioscience.org/environment/voogt.html.
  • Xian G., Crane M. (2006)—An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sensing of Environment, 104: 147–156. doi: http://dx.doi.org/10.1016/j.rse.2005.09.023.
  • Xiong Y., Huang S., Chen F., Ye H., Wang C., Zhu C. (2012)—The Impacts of Rapid Urbanization on the Thermal Environment: A Remote Sensing Study of Guangzhou, South China. Remote Sensing, 4: 2033–2056. doi: http://dx.doi.org/10.3390/rs4072033.
  • Xu H. (2007)—Extraction of urban built-up land features from Landsat Imagery using a Thematic-oriented index combination technique. Photogrammetric Engineering & Remote Sensing, 73 (12): 1381–1391. doi: http://dx.doi.org/10.14358/PERS.73.12.1381.
  • Xu H., Ding F., Wen X. (2009)—Urban Expansion and Heat Island Dynamics in the Quanzhou Region, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2 (2): 74–79. doi: http://dx.doi.org/10.1109/JSTARS.2009.2023088.
  • Yuan F., Bauer M.E. (2007)—Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106 (3): 375–386. doi: http://dx.doi.org/10.1016/j.rse.2006.09.003.
  • Weng Q., Hu X., Quattrochi D.A., Liu H. (2014)—Assessing Intra-Urban Surface Energy Fluxes Using Remotely Sensed ASTER Imagery and Routine Meteorological Data: A Case Study in Indianapolis, U.S.A. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7 (10): 4046–4057. doi: http://dx.doi.org/10.1109/JSTARS.2013.2281776.