1,056
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Surface moisture and temperature trends anticipate drought conditions linked to wildfire activity in the Iberian Peninsula

, , &
Pages 955-971 | Received 01 Apr 2016, Accepted 01 Sep 2016, Published online: 17 Feb 2017

References

  • AEMET (2011)—Resumen annual climatológico 2011. Agencia Estatal de Meteorología, Ministerio de Agricultura, Alimentación y Medio Ambiente.
  • AEMET (2012)—Resumen annual climatológico 2012. Agencia Estatal de Meteorología, Ministerio de Agricultura, Alimentación y Medio Ambiente.
  • AEMET (2014)—Resumen annual climatológico 2014. Agencia Estatal de Meteorología, Ministerio de Agricultura, Alimentación y Medio Ambiente.
  • Amraoui M., Pereira M.G., Da Camara C.C., Calado T.J. (2014)—Severe fire activity and associated atmospheric patterns over Iberia and North Africa. In: Advances in forest fire research, Viegas, D.X. (Ed.), Coimbra University Press, Coimbra. doi: http://dx.doi.org/10.14195/978-989-26-0884-6_102.
  • Bartsch A., Balzter H., George C. (2009)—The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites. Environmental Research Letters, 4. doi: http://dx.doi.org/10.1088/1748-9326/4/4/045021.
  • BEC(2015a)—BEC-SMOS-0001-PD. Products Description. Barcelona Expert Center, 2015-06-18, Issue 1.4. Available online at: http://cp34-bec.cmima.csic.es/products-documentation/.
  • BEC (2015b)—CP34-BEC: BEC data distribution and visualization services. 2012–2015. Barcelona Expert Centre. Available online at: http://cp34-bec.cmima.csic.es/data/data-access. (Last accessed: 13th June 2015).
  • Bowman D.M.J.S., Balch J.K., Artaxo P., Bond W.J., Carlson J.M., Cochrane M.A., D'Antonio C.M., DeFries R.S., Doyle J.C., Harrison S.P., Johnston F.H., Keeley J.E., Krawchuk M.A., Kull C.A., Marston J.B., Moritz M.A., Prentice I.C., Roos C.I., Scott A.C., Swetnam T.W., van der Werf G.R., Pyne S.J. (2009)—Fire in the Earth System. Science, 324: 481–484. doi: http://dx.doi.org/10.1126/science.1163886.
  • Bradshaw L.S., Deeming J.E., Burgan R.E., Cohen J.D. (1984)—The 1978 National Fire-Danger Rating System: technical documentation. General Technical Report INT-169, Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 44 pp.
  • Chaparro D., Vayreda J., Martínez-Vilalta J., Vall-llossera M., Banqué M., Camps A., Piles M. (2014)—SMOS and climate data applicability for analyzing forest decline andforest fires. IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), pp. 1069–1072, 13–18 July 2014. doi: http://dx.doi.org/10.1109/igarss.2014.6946613.
  • Chaparro D., Vall-llossera M., Piles M., Camps A., Rüdiger C. (2015)—Low soil moisture and high temperatures as indicators for forest fire occurrence and extent across the Iberian Peninsula. IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), pp. 3325–3328, 26–31 July 2015. doi: http://dx.doi.org/10.1109/igarss.2015.7326530.
  • Chaparro D., Piles M., Vall-llossera M. (2016)—Remotely sensed soil moisture as a key variable in wildfires prevention services: towards new prediction tools using SMOS and SMAP data. In: Satellite soil moisture retrieval, Srivastava P., Petropoulos G., Kerr Y.H. (Eds.), Elsevier. doi: http://dx.doi.org/10.1016/B978-0-12-803388-3.00013-9.
  • Chuvieco E., Cocero D., Riaño D., Martín P., Martínez-Vega J., de la Riva J., Pérez F. (2004) Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sensing of Environment, 92: 322–331. doi: http://dx.doi.org/10.1016/j.rse.2004.01.019.
  • Cohen J.D. (2008)—The wildland-urban interface fire problem: a consequence of the fire exclusion paradigm. Forest History Today, pp. 20–26.
  • Deeming J.E., Burgan R.E., Cohen J.D. (1977)—The National Fire-Danger Rating System -1978. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, General Technical Report INT-39.
  • ECMWF (2015)—ERA-Interim Project. European Centre for Medium-Range Weather Forecasts. Available online at: http://www.ecmwf.int/en/research/climate-reanalysis/era-interim. (Last accessed: 12th September 2015).
  • EEA (2006)—Corine Land Cover Map. European Environment Agency.
  • Entekhabi D., Njoku E.G., O'Neill RE., Kellogg K.H., Crow W.T., Edelstein W.N., Entin J.K., Goodman S.D., Jackson T.J., Johnson J., Kimball J., Piepmeier J.R., Koster R.D., Martin N., McDonald K.C., Moghaddam M., Moran S., Reichle R., Shi J.C., Spencer M.W., Thurman S.W., Tsang L., Zyl J.V. (2010)—The Soil Moisture Active Passive (SMAP)Mission. Proceedings of the IEEE, 98: 704–716. doi: http://dx.doi.org/10.1109/JPROC.2010.2043918.
  • European Comission (2010)—Forest Fires in Europe 2009, EUR 24502 EN. Office for Official Publications of the European Communities, Luxembourg, p. 81.
  • Fang B., Lakshmi V. (2014)—Soil moisture at watershed scale: remote sensing techniques. Journal of Hydrology, 516: 258–272. doi: http://dx.doi.org/10.1016/).jhydrol.2013.12.008.
  • FAO(2006)—Fire Management-Global Assessment (2006), A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005. Food and Agriculture Organization, Rome.
  • Forkel M., Thonicke K., Beer C., Cramer W., Bartalev S., Schmullus C. (2012)—Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia. Environmental Research Letters, 7 (4): 9 pp. doi: http://dx.doi.org/10.1088/1748-9326/7/4/044021.
  • Joint Research Centre (2016)—European Forest Fires Information System. Available online at: http://forest.jrc.ec.europa.eu/effis. (Last accessed: 21th March 2016).
  • Jolly W.M., Cochrane M.A., Freeborn P.H., Holden Z.A., Brown T.J., Williamson G.J., Bowman D.M.J.S. (2015)—Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 6 (7537). doi: http://dx.doi.org/10.1038/ncomms8537.
  • Kerr Y., Waldteufel P., Wigneron J.-P., Delwart S., Cabot F., Boutin J., Escorihuela M.J., Font J., Reul N., Gruhier C., Juglea S., Drinkwater M.R., Hahne A., Martin-Neira M., Mecklenburg S. (2010)—The SMOS Mission: new tool for monitoring key elements of the global water cycle. Proceedings of the IEEE, Institute of Electrical and Electronics Engineers, 98 (5): 666–687. doi: http://dx.doi.org/10.1109/JPROC.2010.2043032.
  • Kim J., Hogue T.S. (2012)—Improving spatial soil moisture representation through integration of AMSR-E and MODIS products. IEEE Transactions on Geoscience and Remote Sensing, 50: 446–460. doi: http://dx.doi.org/10.1109/TGRS.2011.2161318.
  • McArthur A.G. (1967)—Fire behavior in eucalypt forests. Commonwealth of Australia Forestry and Timber Bureau, Leaflet, 107, (Canberra, ACT).
  • Merlin O., Walker J.P., Chehbouni A., Kerr Y. (2008)—Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency. Remote Sensing of Environment, 112: 2500–2512. doi: http://dx.doi.org/10.1016/j.rse.2008.06.012.
  • Merlin O., Al Bitar A., Walker J.P., Kerr Y. (2010)—An improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal-infrared data. Remote Sensing of Environment, 114: 2305–2316. doi: http://dx.doi.org/10.1016/j.rse.2010.05.007.
  • Merlin O., Malbéteau Y., Notfi Y., Bacon S., Khabba S.E.-R., Jarlan L. (2015)—Performance Metrics for Soil Moisture Downscaling Methods: Application to DISPATCH Data in Central Morocco. Remote Sensing, 7: 3783–3807. doi: http://dx.doi.org/10.3390/rs70403783.
  • Moreno J.M., Chuvieco E., Cruz Treviño A., García Diez E., de Luis Calabuig E., Pérez Ramos B., Rodríguez Silva F., San Miguel J., Vallejo R., Vega J.A., Vélez Muñoz R., Zavala G. (2005)—Impactos sobre los riesgos naturales de origen climático. Riesgo de incendios forestales. In: Evaluación Preliminar de los Impactos en España por Efecto del Cambio Climático, Proyecto ECCE-Informe final, Moreno J.M.(Ed.), Ministerio de Medio Ambiente.
  • Ninyerola M., Pons X., Roure J.M., Martín-Vide J., Raso-Nadal J.M., Clavero P. (2003)—Atles Climàtics de Catalunya. Servei Meteorològic de Catalunya, 2003.
  • Ochsner T.E., Cosh M.H., Cuenca R.H., Dorigo W.A., Draper C.S., Hagimoto Y., Kerr Y. H., Larson K.M., Njoku E.G., Small E.E., Zreda M. (2013)—State of the art in large- scale soil moisture monitoring. Soil Science Society of America Journal, 77 (6): 1888–1919. doi: http://dx.doi.org/10.2136/sssaj2013.03.0093.
  • Oppenheimer M., Campos M., Warren W., Birkmann J., Luber G., O'Neill B., Takahashi K. (2013)—Emergent Risks and Key Vulnerabilities. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Working Group II Contribution to the IPCC 5th Assessment Report, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Padilla M., Vega-García C. (2011)—On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-causedfire occurrences in Spain. International Journal of Wildland Fire, 20: 46–58. doi: http://dx.doi.org/10.1071/WF09139.
  • Paes do Amaral J.M. (2000)—Zonasfitogeográficaspredominantes. Ministerio do Ambiente e do Ordenamento do Territòrio, Direcção-Geral do Ambiente. Lisboa.
  • Pereira M.G., Trigo R.M., da Camara C.C., Pereira J.M.C., Leite S.M. (2005)—Synoptic patterns associated with large summer forest fires in Portugal. Agricultural and Forest Meteorology, 129: 11–25. doi: http://dx.doi.org/10.1016/j.agrformet.2004.12.007.
  • Piles M., Camps A., Vall-llossera M., Corbella I., Panciera R., Rüdiger C., Kerr Y.H., Walker J. (2011)—Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data. IEEE Transactions on Geoscience and Remote Sensing, 49: 3156–3166. doi: http://dx.doi.org/10.1109/TGRS.2011.2120615.
  • Piles M., Sánchez N., Vall-llossera M., Camps A., Martínez-Fernández J., Martínez J., González-Gambau V. (2014)—A downscaling approach for SMOS land observations: evaluation of high resolution soil moisture maps over the Iberian Peninsula. IEEE Journal of Selected Topics on Applied Earth Observations and Remote Sensing, 7 (9): 3845–3857. doi: http://dx.doi.org/10.1109/JSTARS.2014.2325398.
  • Piles M., Petropoulos G.P., Sánchez N., González-Zamora A., Ireland G. (2016)—Towards improved spatio-temporal resolution soil moisture retrievals from the synergy of SMOS and MSG SEVIRI spaceborne observations. Remote Sensing of Environment, 180: 403–417. doi: http://dx.doi.org/10.1016/j.rse.2016.02.048.
  • Polcher J., Piles M., Gelati E., Barella-Ortiz A., Tello M. (2016)—Comparing surface-soil moisture from the SMOS mission and the ORCHIDEE land-surface model over the Iberian Peninsula. Remote Sensing of Environment, 174: 69–81. doi: http://dx.doi.org/10.1016/j.rse.2015.12.004.
  • Radeloff V.C., Hammer R.B., Stewart S.I., Fired J.S., Holcomb S.S., McKeefry J.F. (2005)—The wildland-urban interface in the United States. Ecological Applications, 15 (3): 799–805. doi: http://dx.doi.org/10.1890/04-1413.
  • San-Miguel-Ayanz J., Moreno J.M., Camia A. (2013)—Analysis of large fires in European Mediterranean landscapes: lessons learned and perspectives. Forest Ecology and Management, 294: 11–22. doi: http://dx.doi.org/10.1016/j.foreco.2012.10.050.
  • Sánchez-Ruiz S., Piles M., Sánchez N., Martínez-Fernández J., Vall-llossera M., Camps A. (2014)—Combining SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture estimates. Journal of Hydrology, 513: 273–283. doi: http://dx.doi.org/10.1016/j.jhydrol.2013.12.047.
  • Scholze M., Knorr W., Amell N.W., Prentice I.C. (2006)—A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences, 103 (35): 13116–13120. doi: http://dx.doi.org/10.1073/pnas.0601816103.
  • Settele J., Scholes R., Betts R., Bunn S., Leadley P., Nepstad D., Overpec J.T., Taboada M.A. (2014)—Terrestrial and inland water systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Field C.B., Barros V.R., Dokken D.J., Mach K.J., Mastrandrea M.D., Bilir T.E., Chatterjee M., Ebi K.L., Estrada Y.O., Genova R.C., Girma B., Kissel E.S., Levy A.N., MacCracken S., Mastrandrea P.R., White L.L. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • SNIAmb (2015)—Sistema Nacional de Informação de Ambiente 2015. Agéncia Portuguesa do Ambiente. Available online at: http://sniamb.apambiente.pt. (Last accessed: 29th March 2016).
  • Syphard A.D., Radeloff V.C., Keuler N.S., Taylor R.S., Hawbaker T.J., Stewart S.I., Clayton M.K. (2008)—Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire, 17: 602–613. doi: http://dx.doi.org/10.1071/WF07087.
  • Tomer S.K., Al Bitar A., Sekhar M., Corgne S., Bandyopadhyay S., Sreelash K., Sharma A.K., Zribi M., Kerr Y. (2015)—Retrieval and multi-scale validation of soil moisture from multi-temporal SAR data in a tropical region. Remote Sensing, 7 (6): 8128–8153. doi: http://dx.doi.org/10.3390/rs70608128.
  • Trigo R.M., Pereira J.M.C., Pereira M.G., Mota B., Calado T.J., Dacamara C.C., Santo F.E. (2006)—Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. International Journal of Climatology, 26: 1741–1757. doi: http://dx.doi.org/10.1002/joc.1333.
  • Van Wagner C.E. (1974)—Structure of the Canadian Forest Fire Weather Index. Department of the Environment, Canadian Forestry Service, 1333, Ottawa.
  • Van Wagner C.E. (1987)—Development and structure of the Canadian Forest Fire Weather Index System. Government of Canada, Canadian Forestry Service, Forest technical report 35, Ottawa.
  • Verdú F., Salas J., Vega-García C. (2012)—A multivariate analysis of biophysical factors and forest fires in Spain, 1991–2005. International Journal of Wildland Fire, 21: 498–509. doi: http://dx.doi.org/10.1071/WF11100.
  • Whelan R.J. (1995)—The ecology of fire. Cambridge University Press, Cambridge.