74
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A Common Insecticide Induced-Oxidative Stress in Wistar Rats: Significance for Humans and Implications for Nutritional Modulation of Insecticide Toxicity

, , , , , & show all
Pages 608-616 | Received 30 May 2020, Accepted 17 Aug 2020, Published online: 02 Sep 2020
 

Abstract

Objective

This study examined the levels of selected micronutrients and associated biochemical changes in rats exposed to Baygon® insecticide. Arsenic is a toxic metalloid commonly used in insecticides manufacture but unheralded.

Methods

Fifteen rats, divided into three equal groups: Group I (control); group II (administered 2.5 mg/kg sodium arsenite (SA) on alternate days for four weeks); group III (exposed to 14.0 mL Baygon® m−3 cage volume daily for four weeks). Serum levels of arsenic (As), selenium (Se) and zinc (Zn) were determined using flame atomic absorption spectrophotometry (FAAS). Reduced glutathione (GSH), glutathione peroxidase (GPx), and total protein (TP) were determined spectrophotometrically.

Results

Arsenic and Se levels were significantly raised in groups II and III compared with control (p < 0.05), unlike Zn levels that were significantly decreased in groups II and III (p < 0.05) in both. No significant change in the activity of GPx; though the activity increased in the group treated with SA, but decreased in the group treated with Baygon® compared to control (P < 0.05). Histology of the liver and lung was unaltered in control, but in contrast, the SA-treated group demonstrated moderate fibrous hyperplasia with prominent highly infiltrated portal area in the liver; while the lung revealed thickened alveolar walls from proliferated pneumocytes. In the Baygon®-treated group, there was mild hyperplasia of the fibrous connective tissue and congested prominent portal areas; while the lung exhibited severe thickened alveolar walls due to proliferated pneumocytes.

Conclusion

Exposure of rats to Baygon® elicited alteration of key trace elements involved in the antioxidant system, culminating in oxidative stress with attendant deleterious effects. One significance of this for humans is that it has great potentials for possible nutritional modulation of insecticide toxicity with micronutrients, especially with zinc, holding great promise in tropical developing countries.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Table 1. Chronic health/pesticides or their components.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.