163
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Ciprofloxacin-induces free radical production in rat cerebral microsomes

ORCID Icon, , , , &
Pages 397-404 | Received 14 Oct 2018, Accepted 27 Feb 2019, Published online: 22 Mar 2019
 

Abstract

In the presence of ciprofloxacin (CPFX), free radical adduct formation was demonstrated in rat cerebral microsomes using a spin trap α-(4-pyridyl-1-oxide)-N-tert-butyl-nitrone by electron spin resonance spectroscopy. Active microsomes, dihydronicotinamide-adenine dinucleotide phosphate, and ciprofloxacin were necessary for the formation of a spin trap/radical adduct. Adduct formation increased dose-dependently at 0.5–1 mM CPFX concentration for 180 min, and 0.3–1 mM concentration level for 240 min. The addition of SKF 525A, ZnCl2 or desferrioxamine to the incubation system caused complete inhibition of the radical formation. However, pretreatment of microsomal system with superoxide dismutase (SOD) did not induce any protective effect. Induction of lipid peroxidation, and depletion of thiol levels by CPFX were also shown in the system. These results strongly suggested that CPFX produces free radical(s) in the cerebral microsomes of rats.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Aylin Gürbay was the recipient of a grant supported by TÜBITAK-NATOA2 and French Government.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.