163
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Ciprofloxacin-induces free radical production in rat cerebral microsomes

ORCID Icon, , , , &
Pages 397-404 | Received 14 Oct 2018, Accepted 27 Feb 2019, Published online: 22 Mar 2019

References

  • Ichikawa N, Naora K, Iwamoto K. Comparative study of permeability into rat cerebrospinal fluid of the quinolones: dependency on their lipophilicities. Biol Pharm Bull. 1994;17(1):152–155.
  • Kucers A, Bennett N, Mc K. The use of antibiotics. Avon: The Bath Press; 1997.
  • Tomé AM, Filipe A. Quinolones: review of psychiatric and neurological adverse reactions. Drug Saf. 2011;34(6):465–488.
  • Bacci C, Galli L, de Martino M, et al. Fluoroquinolones in children: update of the literature. J Chemother. 2015;27(5):257–265.
  • Hayem G, Petit PX, Levacher M, et al. Cytofluorometric analysis of chondrotoxicity of fluoroquinolone antimicrobial agents. Antimicrob Agents Chemother. 1994;38(2):243–247.
  • Pouzaud F, Bernard-Beaubois K, Thevenin M, et al. In vitro discrimination of fluoroquinolones toxicity on tendon cells: involvement of oxidative stress. J Pharmacol Exp Ther. 2004;308(1):394–402.
  • Wagai N, Tawara K. Quinolone antibacterial-agent-induced cutaneous phototoxicity: ear swelling reactions in BALB/c mice. Toxicol Lett. 1991;58(2):215–223.
  • Gürbay A, Garrel C, Osman M, et al. Cytotoxicity in ciprofloxacin-treated human fibroblast cells and protection by vitamin E. Hum Exp Toxicol. 2002;21(12):635–641.
  • Gürbay A, Gonthier B, Barret L, et al. Cytotoxic effect of ciprofloxacin in primary culture of rat astrocytes and protection by vitamin E. Toxicology. 2007;229(1–2):54–61.
  • Gürbay A, Gonthier B, Daveloose D, et al. Microsomal metabolism of ciprofloxacin generates free radicals. Free Radic Biol Med. 2001;30(10):1118–1121.
  • Gürbay A, Hıncal F. Ciprofloxacin-induced glutathione redox status alterations in rat tissues. Drug Chem Toxicol. 2004;27(3):233–242.
  • Rawi SM, Mourad IM, Arafa NMS, et al. Effect of ciprofloxacin and levofloxacin on some oxidative stress parameters in brain regions of male albino rats. Afr J Pharm Pharmacol. 2011;5(16):1888–1897.
  • Talla V, Veerareddy P. Oxidative stress induced by fluoroquinolones on treatment for complicated urinary tract infections in Indian patients. J Young Pharm. 2011;3(4):304–309.
  • Qin P, Liu R. Oxidative stress response of two fluoroquinolones with catalase and erythrocytes: A combined molecular and cellular study. J Hazard Mater. 2013;252–253:321–329.
  • Buettner GR. In the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals. J Biochem Biophys Methods. 1988;16(1):27–40.
  • Cederbaum AI, Cohen G. Microsomal oxidation of hydroxyl radical scavenging agents. In: Greenwald RA, editor. CRC handbook of methods for oxygen radical research. New York: CRC Press Incorporated; 1986. p. 81–87.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Richard MJ, Portal B, Meo J, et al. Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid. Clin Chem. 1992;38(5):704–709.
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–77.
  • Gasser TC, Ebert SC, Graversen PH, et al. Ciprofloxacin pharmacokinetics in patients with normal and impaired renal function. Antimicrob Agents Chemother. 1987;31(5):709–712.
  • Naora K, Ichikawa N, Hirano H, et al. Distribution of ciprofloxacin into the central nervous system in rats with acute renal or hepatic failure. J Pharm Pharmacol. 1999;51(5):609–616.
  • Gerding DN, Hitt JA. Tissue penetration of the new quinolones in humans. Rev Infect Dis. 1989;11(Suppl 5):S1046–S1057.
  • Wolff M, Boutron L, Singlas E, et al. Penetration of ciprofloxacin into cerebrospinal fluid of patients with bacterial meningitis. Antimicrob Agents Chemother. 1987;31(6):899–902.
  • Davey PG, Charter M, Kelly S, et al. Ciprofloxacin and sparfloxacin penetration into human brain tissue and their activity as antagonists of GABAA receptor of rat vagus nerve. Antimicrob Agents Chemother. 1994;38(6):1356–1362.
  • Bassaris HP, Papadakis N, Gogos C, et al., editors. Penetration of ciprofloxacin into human cerebrospinal fluid. Proceedings of the First International Ciprofloxacin Workshop; 1986 Nov 6–8. p. 204–205.
  • Dodd PR, Davies LP, Watson WEJ, et al. Neurochemical studies on quinolone antibiotics: effects on glutamate, GABA and adenosine systems in mammalian CNS. Pharmacol Toxicol. 1989;64(5):404–411.
  • Takayama S, Hirohashi M, Kato M, et al. Toxicity of quinolone antimicrobial agents. J Toxicol Environ Health. 1995;45(1):1–45.
  • Green MA, Halliwell RF. Selective antagonism of the GABAA receptor by ciprofloxacin and biphenylacetic acid. Br J Pharmacol. 1997;122(3):584–590.
  • North JA, Spector AA, Buettner GR. Detection of lipid radicals by electron paramagnetic resonance spin trapping using intact cells enriched with polyunsaturated fatty acid. J Biol Chem. 1992;267(9):5743–5746.
  • Buettner GR, Kelley EE, Burns CP. Membrane lipid free radicals produced from L1210 murine leukemia cells by photofrin photosensitization: an electron paramagnetic resonance spin trapping study. Cancer Res. 1993;53(16):3670–3673.
  • Barclay LRC, Ingold KU. Autoxidation of biological molecules. 2. Autoxidation of a model membrane. Comparison of the autoxidation of egg lecithin phosphatidylcholine in water and in chlorobenzene. J Am Chem Soc. 1981;103(21):6478–6485.
  • Hincal F, Taskin T. The mechanism of convulsions induced by ciprofloxacin may involve the generation of free radicals and the activation of excitatory amino acid receptors. Abstracts of the international congress of toxicology – VII; 1995; Seattle, WA. p. 27:(abstract 99).
  • Arafa NM, Abdel-Rahman M, El-khadragy MF, et al. Evaluation of the possible epileptogenic activity of ciprofloxacin: the role of Nigella sativa on amino acids neurotransmitters. Neurochem Res. 2013;38(1):174–185.
  • Sörgel F. Metabolism of gyrase inhibitors. Rev Infect Dis. 1989;11(Suppl 5):S1119–S1129.
  • Vance-Bryan K, Guay DR, Rotschafer JC. Clinical pharmacokinetics of ciprofloxacin. Clin Pharmacokinet. 1990;19(6):434–461.
  • Chidiac C, SPILF working group. Update on a proper use of systemic fluoroquinolones in adult patients (ciprofloxacin, levofloxacin, moxifloxacin, norfloxacin, ofloxacin, pefloxacin). Med Mal Infect. 2015;45(9):348–373.
  • Warner M, Köhler C, Hansson T, et al. Regional distribution of cytochrome P-450 in the rat brain: spectral quantitation and contribution of P-450b,e, and P-450c,d. J Neurochem. 1988;50(4):1057–1065.
  • Miksys S, Tyndale RF. Cytochrome P450-mediated drug metabolism in the brain. J Psychiatry Neurosci. 2013;38(3):152–163.
  • Jeffery EH. The effect of zinc on NADPH oxidation and monooxygenase activity in rat hepatic microsomes. Mol Pharmacol. 1983;23(2):467–473.
  • Chvapil M, Ludwig JC, Sipes IG, et al. Inhibition of NADPH oxidation and related drug oxidation in liver microsomes by zinc. Biochem Pharmacol. 1976;25(15):1787–1791.
  • Hida H, Coudray C, Calop J, et al. Effect of antioxidants on adriamycin-induced microsomal lipid peroxidation. Biol Trace Elem Res. 1995;47(1–3):111–116.
  • Minotti G. The role of an endogenous nonheme iron in microsomal redox reactions. Arch Biochem Biophys. 1992;297(2):189–198.
  • Miller DM, Buettner GR, Aust SD. Transition metals as catalysts of “autoxidation” reactions. Free Radic Biol Med. 1990;8(1):95–108.
  • Hartley A, Davies M, Rice-Evans C. Desferrioxamine as a lipid chain-breaking antioxidant in sickle erythrocyte membranes. FEBS Lett. 1990;264(1):145–148.
  • Chvapil M, Ryan JN, Elias SL, et al. Protective effect of zinc on carbon tetrachloride-induced liver injury in rats. Exp Mol Pathol. 1973;19(2):186–196.
  • Bettger WJ, O’Dell BL. A critical physiological role of zinc in the structure and function of biomembranes. Life Sci. 1981;28(13):1425–1438.
  • Coppen DE, Richardson DE, Cousins RJ. Zinc suppression of free radicals induced in cultures of rat hepatocytes by iron, t-butyl hydroperoxide, and 3-methylindole. Proc Soc Exp Biol Med. 1988;189(1):100–109.
  • Oliveira VA, Oliveira CS, Ineu RP, et al. Lactating and non-lactating rats differ in sensitivity to HgCl(2): protective effect of ZnCl(2). J Trace Elem Med Biol. 2014;28(2):240–246.
  • Ueda Y, Yokoyama H, Niwa R, et al. Generation of lipid radicals in the hippocampal extracellular space during kainic acid-induced seizures in rats. Epilepsy Res. 1997;26(2):329–333.
  • Kawakami Y, Monobe M, Kuwabara K, et al. A comparative study of nitric oxide, glutathione, and glutathione peroxidase activities in cerebrospinal fluid from children with convulsive diseases/children with aseptic meningitis. Brain Dev. 2006;28(4):243–246.
  • Abdel-Zaher AO, Afify AH, Kamel SM, et al. Involvement of glutamate, oxidative stress and inducible nitric oxide synthase in the convulsant activity of ciprofloxacin in mice. Eur J Pharmacol. 2012;685(1–3):30–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.