219
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An analysis of ramie fiber (Boehmeria nivea L. Gaud) treated with low temperature plasma using a mathematical model

ORCID Icon, ORCID Icon & ORCID Icon
Pages 255-264 | Received 29 Nov 2023, Accepted 02 Apr 2024, Published online: 23 Apr 2024
 

Abstract

This research aims to characterize low-temperature plasma-treated ramie fibers (Boehmeria nivea L. Gaud), create a mathematical model, and analyze them using image processing. The effects of low-temperature plasma treatment on ramie fibers were investigated using 30 kV output powers, 4-min treatment times, and a 4 cm electrode distance. SEM and FT-IR spectroscopy were used to investigate various aspects of the ramie fiber’s chemical properties and surface topography. This study used a statistical approach to analyze the SEM images. The statistical analysis was used to investigate the surface roughness using the SEM images. FT-IR analysis discovered that fibers that were exposed for four minutes differed from untreated fibers. According to the findings, plasma treatment caused: (1) ramie fiber became more hydrophilic, as indicated by the presence of hydrophilic functional groups such as hydroxyl (O–H), carboxyl (O–C), and carbonyl (C=O) in FT-IR with a deeper T%, (2) ramie fiber mass reduction was accompanied by an increase in surface roughness via SEM testing and image processing, and (3) plasma-treated fiber had a coefficient of mass variation (CV) of 0.7211 higher than untreated fiber. The novelty of this study is the use of image processing in SEM to observe surface roughness and its relationship to the chemical structure of ramie fibers observed with FT-IR. Another novelty of this research is the mathematical model of the interaction of plasma species with the ramie fibers on the plane electrode for the first time.

Acknowledgments

The authors thank Universitas Gadjah Mada, Indonesia, the Industrial Human Resources Development Agency (BPSDMI), Ministry of Industry of the Republic of Indonesia and the Indonesia Endowment Funds for Education (LPDP) for providing adequate facilities and funding. We also thank our colleagues who helped us with the research and analysis.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.