219
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An analysis of ramie fiber (Boehmeria nivea L. Gaud) treated with low temperature plasma using a mathematical model

ORCID Icon, ORCID Icon & ORCID Icon
Pages 255-264 | Received 29 Nov 2023, Accepted 02 Apr 2024, Published online: 23 Apr 2024

References

  • Barani, H., & Calvimontes, A. (2014). Effects of oxygen plasma treatment on the physical and chemical properties of wool fiber surface. Plasma Chemistry and Plasma Processing, 34(6), 1291–1302. doi:10.1007/S11090-014-9581-X/TABLES/3
  • Bledzki, A. K., Mamun, A. A., Lucka-Gabor, M., & Gutowski, V. S. (2008). The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters, 2(6), 413–422. doi:10.3144/expresspolymlett.2008.50
  • Chen, H. H., & Ries, M. D. (1996). Surface energy modification and characterization of a plasma-polymerized fluoropolymer. Journal of Adhesion Science and Technology, 10(6), 495–513. doi:10.1163/156856196X00553
  • Chi-Wai, K., Kwong, C., Chun-Wah, M. Y., & Hom, H. (2004). The possibility of low-temperature plasma treated wool fabric for industrial use. AUTEX Research Journal, 4(1), 37–44. doi:10.1515/aut-2004-040107
  • Ding, J., Zhou, C., & Dong, Z. (2023). Trend of ramie industry development: A review of green degumming and the utilization of processing residues. Journal of Cleaner Production, 384, 135487. doi:10.1016/j.jclepro.2022.135487
  • Fakin, D., Ojstršek, A., & Benkovič, S. Č. (2009). The impact of corona modified fibres’ chemical changes on wool dyeing. Journal of Materials Processing Technology, 209(1), 584–589. doi:10.1016/j.jmatprotec.2008.02.034
  • Haji, A., & Qavamnia, S. S. (2015). Response surface methodology optimized dyeing of wool with cumin seeds extract improved with plasma treatment. Fibers and Polymers, 16(1), 46–53. doi:10.1007/S12221-015-0046-5/METRICS
  • Haji, A., & Shoushtari, A. M. (2011). Natural antibacterial finishing of wool fiber using plasma technology. Industria Textila, 62, 244–247.
  • Hamad, S. F., Stehling, N., Hayes, S. A., Foreman, J. P., & Rodenburg, C. (2019). Exploiting Plasma Exposed, Natural Surface Nanostructures in Ramie Fibers for Polymer Composite Applications. Materials, 12(10), 1631. doi:10.3390/ma12101631
  • Huang, H., Tang, Q., Lin, G., Liu, Y., Yu, J., Ding, B., & Li, Z. (2022). Anthraquinone-assisted deep eutectic solvent degumming of ramie fibers: Evaluation of fiber properties and degumming performance. Industrial Crops and Products, 185, 115115. doi:10.1016/j.indcrop.2022.115115
  • Huang, H., Tang, Q., Lin, G., Yu, C., Wang, H., & Li, Z. (2021). High-efficiency and recyclable ramie cellulose fiber degumming enabled by deep eutectic solvent. Industrial Crops and Products, 171, 113879. doi:10.1016/j.indcrop.2021.113879
  • Huang, C. Y., Wu, J. Y., Tsai, C. S., Hsieh, K. H., Yeh, J. T., & Chen, K. N. (2013). Effects of argon plasma treatment on the adhesion property of ultra high molecular weight polyethylene (UHMWPE) textile. Surface and Coatings Technology, 231, 507–511. doi:10.1016/j.surfcoat.2012.04.069
  • Jagadeesh, P., Puttegowda, M., Mavinkere Rangappa, S., & Siengchin, S. (2021). A review on extraction, chemical treatment, characterization of natural fibers and its composites for potential applications. Polymer Composites, 42(12), 6239–6264. doi:10.1002/pc.26312
  • Jose, S., Rajna, S., & Ghosh, P. (2016). Ramie fibre processing and value addition. Asian Journal of Textile, 7(1), 1–9. doi:10.3923/ajt.2017.1.9
  • Kalaprasad, G., Francis, B., Thomas, S., Kumar, C. R., Pavithran, C., Groeninckx, G., & Thomas, S. (2004). Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites. Polymer International, 53(11), 1624–1638. doi:10.1002/pi.1453
  • Kan, C. W., & Yuen, C. W. M. (2007). Plasma technology in wool. Textile Progress, 39(3), 121–187. doi:10.1080/00405160701628839
  • Lieberman, M., & Lichtenberg, A. (1994). Principles of plasma discharges and materials processing. New York, USA: John Wiley and Sons.
  • Li, Z., Li, Z., Ding, R., & Yu, C. (2016). Composition of ramie hemicelluloses and effect of polysaccharides on fiber properties. Textile Research Journal, 86(5), 451–460. doi:10.1177/0040517515592811
  • Li, Z., Meng, C., & Yu, C. (2015). Analysis of oxidized cellulose introduced into ramie fiber by oxidation degumming. Textile Research Journal, 85(20), 2125–2135. doi:10.1177/0040517515581589
  • Li, Y., Moyo, S., Ding, Z., Shan, Z., & Qiu, Y. (2013). Helium plasma treatment of ethanol-pretreated ramie fabrics for improving the mechanical properties of ramie/polypropylene composites. Industrial Crops and Products, 51, 299–305. doi:10.1016/j.indcrop.2013.09.028
  • Lin, G., Tang, Q., Huang, H., Yu, J., Li, Z., & Ding, B. (2022). Process optimization and comprehensive utilization of recyclable deep eutectic solvent for the production of ramie cellulose fibers. Cellulose, 29(7), 3689–3701. doi:10.1007/S10570-022-04501-0/FIGURES/6
  • Lin, G., Tang, Q., Huang, H., Yu, C., Yu, J., Li, Z., & Ding, B. (2022). One-step extraction of ramie cellulose fibers and reutilization of degumming solution. Textile Research Journal, 92(19–20), 3579–3590. doi:10.1177/00405175221086886
  • Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment, 15(1), 25–33. doi:10.1007/s10924-006-0042-3
  • Liu, X., & Cheng, L. (2016). Influence of plasma treatment on properties of ramie fiber and the reinforced composites. Journal of Adhesion Science and Technology, 31(15), 1723–1734. doi:10.1080/01694243.2016.1275095
  • Liu, L-j., Lao, C-y., Zhang, N., Chen, H-q., Deng, G., Zhu, C., & Peng, D-x (2013). The effect of new continuous harvest technology of ramie (Boehmeria nivea L. Gaud.) on fiber yield and quality. Industrial Crops and Products, 44, 677–683. doi:10.1016/j.indcrop.2012.09.003
  • Li, Z., & Yu, C. (2014). Effect of peroxide and softness modification on properties of ramie fiber. Fibers and Polymers, 15(10), 2105–2111. doi:10.1007/S12221-014-2105-8/METRICS
  • Lubis, R. W., Saraswati, T. E., Setiawan, U. H., & Kusumandari, K. (2019). Surface modification of activated carbon using an atmospheric pressure dielectric barrier discharge (DBD) plasma jet. IOP Conference Series: Materials Science and Engineering, 578(1), 012010. doi:10.1088/1757-899X/578/1/012010
  • Ma, S., Bromberg, V., Liu, L., Egitto, F. D., Chiarot, P. R., & Singler, T. J. (2014). Low temperature plasma sintering of silver nanoparticles. Applied Surface Science, 293, 207–215. doi:10.1016/j.apsusc.2013.12.135
  • Morent, R., De Geyter, N., Verschuren, J., De Clerck, K., Kiekens, P., & Leys, C. (2008). Non-thermal plasma treatment of textiles. Surface and Coatings Technology, 202(14), 3427–3449. doi:10.1016/J.SURFCOAT.2005.05.004
  • Neeraj, R. H., & Veeresha, R. K. (2022). A review on surface roughness measurement using image processing. International Journal of Research Publication and Reviews, 3, 1104–1107. doi:10.55248/gengpi.2022.3.8.38
  • Ondra, J. (2000). "Measurement of Roughness Using Image Processing," Measurement - Supports Science - Improves Technology - Protects Environment … and Provides Employment - Now and in the Future, Vienna, Austria.
  • Rauscher, H., Perucca, M., & Buyle, G. (2010). Plasma technology for hyperfunctional surfaces. Weinheim, Germany: Wiley. doi:10.1002/9783527630455
  • Ray, D., Sarkar, B. K., Rana, A. K., & Bose, N. R. (2001a). Effect of alkali treated jute fibres on composite properties. Bulletin of Materials Science, 24(2), 129–135. doi:10.1007/BF02710089
  • Ray, D., Sarkar, B. K., Rana, A. K., & Bose, N. R. (2001b). The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres. Composites Part A: Applied Science and Manufacturing, 32(1), 119–127. doi:10.1016/S1359-835X(00)00101-9
  • Reddy, A. C. (2004). Evaluation of Surface Roughness Using Image Processing Technique. In: Proceedings of the International Conference on Systemics, Cybernetics and Informatics; doi:10.13140/2.1.2687.5207
  • Shen, P., Tang, Q., Chen, X., & Li, Z. (2022). Nanocrystalline cellulose extracted from bast fibers: Preparation, characterization, and application. Carbohydrate Polymers, 290, 119462. doi:10.1016/J.CARBPOL.2022.119462
  • Shishoo, R. (2007). Plasma technologies for textiles (1st ed.). Cambridge, UK: Woodhead Publishing.
  • Torres, F. G., & Cubillas, M. L. (2005). Study of the interfacial properties of natural fibre reinforced polyethylene. Polymer Testing, 24(6), 694–698. doi:10.1016/j.polymertesting.2005.05.004
  • Xu, C., Gu, Y., Yang, Z., Li, M., Li, Y., & Zhang, Z. (2015). Mechanical properties of surface-treated ramie fiber fabric/epoxy resin composite fabricated by vacuum-assisted resin infusion molding with hot compaction. Journal of Composite Materials, 50(9), 1189–1198. doi:10.1177/0021998315590259
  • Zhang, Z., Cai, S., Li, Y., Wang, Z., Long, Y., Yu, T., & Shen, Y. (2020). High performances of plant fiber reinforced composites—A new insight from hierarchical microstructures. Composites Science and Technology, 194, 108151. doi:10.1016/j.compscitech.2020.108151
  • Zhang, Q., Jiang, Y., Yao, L., Jiang, Q., & Qiu, Y. (2015). Hydrophobic surface modification of ramie fibers by plasma-induced addition polymerization of propylene. Journal of Adhesion Science and Technology, 29(8), 691–704. doi:10.1080/01694243.2014.997380
  • Zhou, N., Yu, B., Sun, J., Yao, L., & Qiu, Y. (2012). Influence of chemical treatments on the interfacial properties of ramie fiber reinforced poly(lactic acid) (PLA) composites. Journal of Biobased Materials and Bioenergy, 6(5), 564–568. doi:10.1166/jbmb.2012.1258