476
Views
104
CrossRef citations to date
0
Altmetric
Review

Targeting matrix metalloproteases to improve cutaneous wound healing

, &
Pages 143-155 | Published online: 27 Jan 2006
 

Abstract

Wound repair is a physiological event in which tissue injury initiates a repair process leading to restoration of structure and function of the tissue. Cutaneous wound repair can be divided into a series of overlapping phases including formation of fibrin clot, inflammatory response, granulation tissue formation incorporating re-epithelialisation and angiogenesis and finally, matrix formation and remodelling. Matrix metalloproteases (MMPs) are a family of neutral proteases that play a vital role throughout the entire wound healing process. They regulate inflammation, degrade the extracellular matrix (ECM) to facilitate the migration of cells and remodel the new ECM. However, excessive MMP activity contributes to the development of chronic wounds. Selective control of MMP activity may prove to be a valuable therapeutic approach to promote healing of chronic ulcers. Recent evidence indicates that the anticoagulant, activated protein C may be useful in the treatment of non-healing wounds by preventing excessive protease activity through inhibition of inflammation and selectively increasing MMP-2 activity to enhance angiogenesis and re-epithelialisation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.