170
Views
18
CrossRef citations to date
0
Altmetric
Original Research

Multimetal organic frameworks as drug carriers: aceclofenac as a drug candidate

, , &
Pages 23-35 | Published online: 18 Dec 2018
 

Abstract

Background

Multimetal organic frameworks (M-MOFs) were synthesized by including a second metal ion with the main base metal in the synthesis process to enhance their applications for drug delivery. Aceclofenac (ACF), a nonsteroidal anti-inflammatory analgesic drug of low aqueous solubility, was selected as a candidate for the drug delivery system

Purpose

This study aimed to evaluate the loading capacity (LC) and entrapment efficiency (EE) percentages of multi-Material of Institute Lavoisier (MIL)-100(Fe) (M-MIL-100(Fe)) for ACF.

Materials and methods

Hydrothermal synthesis procedure was used to prepare multi-MIL-100(Fe) samples (Zn I-MIL-100(Fe), Zn II-MIL-100(Fe), Ca I-MIL-100(Fe), Ca II-MIL-100-(Fe), Mg I-MIL-100(Fe), Mg II-MIL-100(Fe), Mn I-MIL-100(Fe), and Mn II-MIL-100(Fe)). The characterization of M-MIL-100(Fe) samples was evaluated by X-ray powder diffraction (XRD), Fourier transform infrared spectra, scanning electron microscope (SEM), TGA, and N2 adsorption isotherms. The LC of M-MIL-100(Fe) and EE of ACF were determined. Nuclear magnetic resonance (NMR) and zeta-potential analyses were employed to confirm qualitatively the drug loading within M-MIL-100(Fe).

Results

The ACF LC of MIL-100(Fe) was 27%, whereas the LC of M-MIL-100(Fe) was significantly increased and ranged from 37% in Ca I-MIL-100(Fe) to about 57% and 59% in Mn II-MIL-100(Fe) and Zn II-MIL-100(Fe), respectively. The ACF@M-MOFs release profiles showed slow release rates in phosphate buffer solutions at pH 6.8 and 7.4 as compared to the ACF@MIL-100(Fe).

Conclusion

Therefore, M-MOFs showed a significant potential as a carrier for drug delivery systems.

Supplementary Materials

Figure S1 TGA profiles of M-MIL-100(Fe) (where M is either Ca, Mg, Mn, or Zn).

Figure S1 TGA profiles of M-MIL-100(Fe) (where M is either Ca, Mg, Mn, or Zn).

Figure S2 SEM images of MIL-100(Fe) and all M-MILs-100(Fe).

Notes: Ca I-MIL-100(Fe) (A), Ca II-MIL-100(Fe) (B), Mg I-MIL-100(Fe) (C), Mg II-MIL-100(Fe) (D), Mn I-MIL-100(Fe) (E), Mn II-MIL-100(Fe) (F), Zn I-MIL-100(Fe) (G), Zn II-MIL-100(Fe) (H), and MIL-100(Fe) (I).
Figure S2 SEM images of MIL-100(Fe) and all M-MILs-100(Fe).

Figure S3 FTIR spectra for M-MIL-100(Fe) (where M is either Ca, Mn, Mg, or Zn) samples.

Abbreviation: FTIR, Fourier transform infrared.
Figure S3 FTIR spectra for M-MIL-100(Fe) (where M is either Ca, Mn, Mg, or Zn) samples.

Acknowledgments

We acknowledge the School of Pharmacy and Faculty of Science and Engineering, Curtin University for providing access to their laboratories and employing different instruments and materials. The authors acknowledge the use of Curtin University’s microscopy and microanalysis facilities, whose instrumentation has been partially funded by University, State, and Commonwealth Government.

Disclosure

The authors report no conflicts of interest in this work.