154
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Glucoside Derivatives Of Podophyllotoxin: Synthesis, Physicochemical Properties, And Cytotoxicity

, , , , , , ORCID Icon, ORCID Icon & show all
Pages 3683-3692 | Published online: 23 Oct 2019
 

Abstract

Background

Widespread concern of the side effects and the broad-spectrum anticancer property of podophyllotoxin as an antitumor agent highlight the need for the development of new podophyllotoxin derivatives. Although some per-butyrylated glucosides of podophyllotoxin and 4β-triazolyl-podophyllotoxin glycosides show good anticancer activity, the per-acetylated/free of podophyllotoxin glucosides and their per-acetylated are not well studied.

Methods

A few glucoside derivatives of PPT were synthesized and evaluated for their in vitro cytotoxic activities against five human cancer cell lines, HL-60 (leukemia), SMMC-7721 (hepatoma), A-549 (lung cancer), MCF-7 (breast cancer), and SW480 (colon cancer), as well as the normal human pulmonary epithelial cell line (BEAS-2B). In addition, we investigated the structure–activity relationship and the physicochemical property–anticancer activity relationship of these compounds.

Results

Compound 6b shows the highest cytotoxic potency against all five cancer cell lines tested, with IC50 values ranging from 3.27±0.21 to 11.37±0.52 μM. We have also found that 6b displays higher selectivity than the etoposide except in the case of HL-60 cell line. The active compounds possess similar physicochemical properties: MSA > 900, %PSA < 20, ClogP > 2, MW > 700 Da, and RB > 10.

Conclusion

We synthesized several glucoside derivatives of PPT and tested their cytotoxicity. Among them, compound 6b showed the highest cytotoxicity. Further studies including selectivity of active compounds have shown that the selectivity indexes of 6b are much greater than the etoposide except in the case of HL-60 cell line. The active compounds possessed similar physicochemical properties. This study indicates that active glucoside analogs of podophyllotoxin have potential as lead compounds for developing novel anticancer agents.

Acknowledgment

We are grateful to the National Nature Science Foundation of China for financial support (No. 21602196); the Yunnan Provincial Science and Technology Department (Nos. 2017ZF003, 2017FD084, and 2017FG001-046); and Yunnan Agricultural University Natural Science Foundation for Young Scientists (No. 2015ZR08).

Disclosure

The authors declare no conflicts of interest in this work.