122
Views
15
CrossRef citations to date
0
Altmetric
Original Research

Anisodamine Suppressed the Growth of Hepatocellular Carcinoma Cells, Induced Apoptosis and Regulated the Levels of Inflammatory Factors by Inhibiting NLRP3 Inflammasome Activation

, &
Pages 1609-1620 | Published online: 29 Apr 2020
 

Abstract

Introduction

Hepatocellular carcinoma (HCC) is a primary liver cancer with a 5-year incidence of over 70%. Anisodamine (ANI), an alkaloid extracted from Anisodus, has a good therapeutic effect in septic shock and morphine addiction. Our study designed to investigate the anticancer effect of anisodamine (ANI) on HCC.

Materials and Methods

HepG2 cells were subcutaneously injected into BALB/C nude mice and the tumor tissue was subcutaneously inoculated to construct the transplanted tumor. Mice were randomly divided into 10 groups (n = 5): control group, ANI-10 group, ANI-50 group, ANI-200 group, ANI-200+pcDNA-NLRP3 group, ANI-200+EV group, sh-NLRP3 group, ANI-200 + sh-NLRP3 group, normal group and normal+ANI-200 group.

Results

Studies indicated that ANI inhibited the growth of HCC xenografts and reduced liver damage in a dose-dependent manner. Besides, ANI increased the survival rate of tumor-bearing mice and suppressed the expression of NLRP3 in a dose-dependent manner. It is worth noting that NLRP3 overexpression reversed the inhibitory effect of ANI on HCC xenografts. In addition, TUNEL analysis showed that ANI-induced apoptosis of tumor cells, and NLRP3 overexpression reversed the inhibitory effect of ANI on HCC. Moreover, ANI further regulated the levels of IFN-γ, TNF-α, IL-4 and IL-27. Notably, low expression of NLRP3 enhanced the inhibitory effect of ANI on the development of HCC xenografts in mice.

Discussion

These findings indicate that ANI suppressed the growth of HCC cells, induced apoptosis and regulated the levels of inflammatory factors by inhibiting NLRP3 inflammasome activation.

Disclosure

The authors report no conflicts of interest regarding the publication of this article.