115
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Laquinimod Protects Against TNF-α-Induced Attachment of Monocytes to Human Aortic Endothelial Cells (HAECs) by Increasing the Expression of KLF2

, &
Pages 1683-1691 | Published online: 30 Apr 2020
 

Abstract

Introduction

As a worldwide health issue, the treatment and prevention of atherosclerosis present an important goal. Increased levels of proinflammatory cytokines such as TNF-α-associated chronic inflammatory response cause endothelial cells to lose their ability to regulate vascular function. Lipid-laden immune cells are recruited to the endothelium where they adhere to the endothelial wall and invade the intimal space, thereby leading to the development of atherosclerotic lesions, fatty plaques, and thickening of the arterial wall. In the present study, for the first time, we investigated the effects of laquinimod, an immunomodulatory agent used for the treatment of multiple sclerosis, on human aortic endothelial in a TNF-α-induced atherosclerotic microenvironment. At present, the mechanism of action of laquinimod is not well defined.

Methods

The effects of laquinimod on the gene expression of IL-6, MCP-1, VCAM-1, E-selectin, and KLF2 were measured by real-time PCR. ELISA assay was used to determine protein secretion and expression. Phosphorylation of ERK5 and the protein level of KLF2 were measured by Western blot analysis. The attachment of monocytes to endothelial cells was assayed by calcein-AM staining and fluorescent microscopy.

Results

Our findings demonstrate that laquinimod reduced the expression of key inflammatory cytokines and chemokines, including IL-6, MCP-1, and HMGB1. We further demonstrate that laquinimod significantly reduced the attachment of monocytes to endothelial cells, which is mediated through reduced expression of the cellular adhesion molecules VCAM-1 and E-selectin. Here, we found that laquinimod could significantly increase the expression of KLF2 through activation of ERK5 signaling. The results of our KLF2 knockdown experiment confirm that the effects of laquinimod observed in vitro are dependent on KLF2 expression.

Conclusion

Together, these findings suggest a potential antiatherosclerotic capacity of laquinimod. Further research will elucidate the underlying mechanisms.

Acknowledgment

This study is funded by the “National Natural Science Foundation of China (No.81570360)”.

Disclosure

There is no conflict of interest to disclose for all the authors in regard to this work.