158
Views
5
CrossRef citations to date
0
Altmetric
Original Research

In vivo Screening of Natural Products Against Angiogenesis and Mechanisms of Anti-Angiogenic Activity of Deoxysappanone B 7,4ʹ-Dimethyl Ether

, , , , , & show all
Pages 3069-3078 | Published online: 30 Jul 2020
 

Abstract

Introduction

The aim of this study was to screen the leading compounds of natural origin with anti-angiogenic potential and to investigate their anti-angiogenic mechanism preliminarily.

Materials and Methods

An initial screening of 240 compounds from the Natural Products Collection of MicroSource was performed using the transgenic zebrafish strain Tg [fli1a: enhanced green fluorescent protein (EGFP)]y1. The zebrafish embryos at 24 h post-fertilization were exposed to the natural compounds for an additional 24 h; then, morphological changes in the intersegmental vessels (ISVs) were observed and quantified under a fluorescence microscope. The expression profiles of angiogenesis-related genes in the zebrafish embryos were detected using quantitative real-time PCR.

Results

Five compounds were identified with potential anti-angiogenic activity on the zebrafish embryogenesis. Among them, deoxysappanone B 7.4ʹ-dimethyl ether (Deox B 7,4) showed anti-angiogenic activity on the formation of ISVs in a dose-dependent manner. The inhibition of ISV formation reached up to 99.64% at 5 μM Deox B 7,4. The expression of delta-like ligand 4 (dll4), hes-related family basic helix-loop-helix transcription factor with YRPW motif 2, ephrin B2, fibroblast growth factor receptor (fgfr) 3, cyclooxygenase-2, protein tyrosine phosphatase, receptor type B (ptp-rb), phosphoinositide-3-kinase regulatory subunit 2, slit guidance ligand (slit) 2, slit3, roundabout guidance receptor (robo) 1, robo2, and robo4 were down-regulated, while vascular endothelial growth factor receptor-2, fgfr 1, and matrix metallopeptidase 9 were up-regulated in the zebrafish embryos treated with Deox B 7,4.

Conclusion

Deox B 7,4 has a therapeutic potential for the treatment of angiogenesis-dependent diseases and may exert anti-angiogenic activities by suppressing the slit2/robo1/2, slit3/robo4, cox2/ptp-rb/pik3r2, and dll4/hey2/efnb2a signaling pathways as well as activation of vegfr-2/fgfr1/mmp9.

Data Sharing Statement

All data generated or analyzed during this study have been included in this published article.

Ethics Approval and Consent to Participate

All protocols comply with the guidelines of the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) International. The protocol was approved by Institutional Animal Care and Use Committee of the Shanghai Research Center for Model Organisms (IACUC No. 2015-0022).

Author Contributions

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.

Disclosure

The authors declare that they have no competing interests in this work.