143
Views
21
CrossRef citations to date
0
Altmetric
Original Research

Osteogenic Effect of tsRNA-10277-Loaded Exosome Derived from Bone Mesenchymal Stem Cells on Steroid-Induced Osteonecrosis of the Femoral Head

, , , &
Pages 4579-4591 | Published online: 28 Oct 2020
 

Abstract

Purpose

Steroids are known to inhibit osteogenic differentiation and subsequent bone formation in bone mesenchymal stem cells (BMSCs). However, little is known about the role of BMSC exosomes (Exos) and tRNA-derived small RNAs (tsRNAs) in steroid-induced osteonecrosis of the femoral head (SONFH). The objective of this study was to characterize the tsRNA expression profiles of plasma Exos collected from SONFH patients and healthy individuals using small RNA sequencing and further explore the effect of BMSC Exos carrying specific tsRNAs on osteogenic differentiation.

Materials and Methods

Based on insights from small RNA sequencing, five differentially expressed (DE) tsRNAs were selected for quantitative real-time polymerase chain reaction (qRT-PCR). The regulatory networks associated with interactions of the tsRNAs-mRNA-pathways were reconstructed. The osteogenesis and adipogenesis in BMSCs were detected via ALP and oil red O staining methods, respectively.

Results

A total of 345 DE small RNAs were screened, including 223 DE tsRNAs. The DE tsRNAs were enriched in Wnt signaling pathway and osteogenic differentiation. We identified five DE tsRNAs, among which tsRNA-10277 was significantly downregulated in plasma Exos of SONFH patients compared to that in healthy individuals. Dexamethasone-induced BMSCs were associated with an increased fraction of lipid droplets and decreased osteogenic differentiation, whereas BMSC Exos restored the osteogenic differentiation of that. After treatment of tsRNA-10277-loaded BMSC Exos, the lipid droplets and osteogenic differentiation ability were found to be decreased and enhanced in dexamethasone-induced BMSCs, respectively.

Conclusion

An altered tsRNA profile might be involved in the pathophysiology of SONFH. tsRNA-10277-loaded BMSC Exos enhanced osteogenic differentiation ability of dexamethasone-induced BMSCs. Our results provide novel insights into the osteogenic effect of BMSC Exos carrying specific tsRNAs on SONFH.

Data Sharing Statement

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics Approval and Consent to Participate

This study was approved by the First Affiliated Hospital of Fujian Medical University. Written informed consent for research purposes were obtained from all patients who participated in the study.

Disclosure

The authors declare that they have no conflicts of interest.