132
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Breviscapine Pretreatment Inhibits Myocardial Inflammation and Apoptosis in Rats After Coronary Microembolization by Activating the PI3K/Akt/GSK-3β Signaling Pathway

, ORCID Icon, , , , , & show all
Pages 843-855 | Published online: 25 Feb 2021
 

Abstract

Purpose

Coronary microembolization (CME) can cause myocardial inflammation, apoptosis and progressive cardiac dysfunction. On the other hand, breviscapine exerts a significant cardioprotective effect in many cardiac diseases although its role and the potential mechanisms in CME remain unclear. Therefore, the present study aimed to ascertain whether pretreatment with breviscapine could improve CME-induced myocardial injury by alleviating myocardial inflammation and apoptosis. The possible underlying mechanisms were also explored.

Methods

In this study, 48 Sprague-Dawley (SD) rats were randomly assigned to the CME, CME + breviscapine (CME + BE), CME + breviscapine + LY294002 (CME + BE + LY) and sham groups (12 rats per group). In addition, the CME model was successfully established by injecting 42 μm inert plastic microspheres into the left ventricle of rats. Rats in the CME + BE and CME + BE + LY groups received 40 mg/kg/d of breviscapine for 7 days before inducing CME. Moreover, rats in the CME + BE + LY group were intraperitoneally injected with the phosphoinositide 3-kinase (PI3K) specific inhibitor, LY294002 (10 mg/kg) 30 minutes before CME modeling. 12 h after surgery, the study measured cardiac function, the serum levels of markers of myocardial injury, myocardial inflammation-associated mRNAs and proteins, myocardial apoptosis-associated mRNAs and proteins and conducted myocardial histopathology.

Results

The findings demonstrated that pretreatment with breviscapine alleviated myocardial injury following CME by improving cardiac dysfunction, decreasing the serum levels of markers of myocardial injury, reducing the size of myocardial microinfarct and lowering the cardiomyocyte apoptotic index. More importantly, pretreatment with breviscapine resulted to a decrease in the levels of inflammatory and pro-apoptotic mRNAs and proteins in myocardial tissues and there was an increase in the levels of anti-apoptotic mRNAs and proteins. However, these protective effects were eliminated when breviscapine was combined with LY294002.

Conclusion

The findings from this study indicated that breviscapine may inhibit myocardial inflammation and apoptosis by regulating the PI3K/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) pathway, thereby ameliorating CME-induced cardiac dysfunction and reducing myocardial injury.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No.81770346) and the Project for Innovative Research Team in Guangxi Natural Science Foundation (Grant No.2018GXNSFGA281006).

Disclosure

The authors declare no conflicts of interest in this work.