350
Views
10
CrossRef citations to date
0
Altmetric
Original Research

UPLC–MS/MS and Network Pharmacology-Based Analysis of Bioactive Anti-Depression Compounds in Betel Nut

ORCID Icon, , , & ORCID Icon
Pages 4827-4836 | Published online: 30 Nov 2021
 

Abstract

Background

Betel nuts have long been used in traditional Chinese medicine. In our study, the bioactive components of betel nut were systematically investigated, and the main components and their target genes in the treatment of depression were predicted.

Methods

The metabolites of the kernels and peels were analyzed with a UPLC–MS/MS system. Mass spectrometry outcomes were annotated by MULTIAQUANT. “Compound‐disease targets” were utilized to construct a pharmacology network.

Results

A total of 873 metabolites were identified, with a high abundance of flavonoids, alkaloids, and phenols. Moreover, the abundance of flavonoids, alkaloids, and phenols in the kernel was significantly higher than that in the peel. A high abundance of catechin, arginine, and phenylalanine was detected in the kernel, while a high abundance of arginine, arecoline, and aminobutyric acid was detected in the peel. Catechins and cyanoside were the most abundant flavonoids in the kernel and peel, respectively. Arecoline was the most abundant alkaloid. A total of 111 metabolites showed a significant difference between the kernels and peels. The relative abundance of 40 differential metabolites was higher than 100,000, including 14 primary metabolites, 12 flavonoids, 4 phenols, and 4 alkaloids. Among the 40 high abundance metabolites, 20 were higher in the kernel and 20 in the peel. In addition, the enrichment of metabolic pathways found that the kernel and peel of the fruit adopted different metabolic pathways for the synthesis of flavonoids and alkaloids. Network pharmacology prediction showed that 93 metabolites could target 141 depression-related genes. The main components of betel nut intervention in depression were predicted to include L-phenylalanine, protocatechuic acid, okanin, nicotinic acid, L-tyrosine, benzocaine, syringic acid, benzocaine, phloretic acid, cynaroside, and 3,4-dihydroxybenzaldehyde.

Conclusion

Betel nuts are rich in natural metabolites, and some of these metabolites can participate in the intervention of depression. In addition, the metabolites showed distinct characteristics between the kernel and peel. Therefore, it is necessary to comprehensively and rationally use betel nuts.

Data Sharing Statement

All datasets generated and analyzed during the current study were uploaded with the manuscript as additional files.

Ethics Statement

None required.

Author Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Disclosure

The authors report no conflicts of interest in this work.

Additional information

Funding

This study was funded by the Natural Science Foundation of Hainan (821RC561), and Innovative research projects for graduate students in Hainan Province (Hys2020-350).