134
Views
25
CrossRef citations to date
0
Altmetric
Original Research

Microencapsulation as a novel delivery method for the potential antidiabetic drug, Probucol

, , , , , , , , , , , & show all
Pages 1221-1230 | Published online: 09 Sep 2014
 

Abstract

Introduction

In previous studies, we successfully designed complex multicompartmental microcapsules as a platform for the oral targeted delivery of lipophilic drugs in type 2 diabetes (T2D). Probucol (PB) is an antihyperlipidemic and antioxidant drug with the potential to show benefits in T2D. We aimed to create a novel microencapsulated formulation of PB and to examine the shape, size, and chemical, thermal, and rheological properties of these microcapsules in vitro.

Method

Microencapsulation was carried out using the Büchi-based microencapsulating system developed in our laboratory. Using the polymer, sodium alginate (SA), empty (control, SA) and loaded (test, PB-SA) microcapsules were prepared at a constant ratio (1:30). Complete characterizations of microcapsules, in terms of morphology, thermal profiles, dispersity, and spectral studies, were carried out in triplicate.

Results

PB-SA microcapsules displayed uniform and homogeneous characteristics with an average diameter of 1 mm. The microcapsules exhibited pseudoplastic-thixotropic characteristics and showed no chemical interactions between the ingredients. These data were further supported by differential scanning calorimetric analysis and Fourier transform infrared spectral studies, suggesting microcapsule stability.

Conclusion

The new PB-SA microcapsules have good structural properties and may be suitable for the oral delivery of PB in T2D. Further studies are required to examine the clinical efficacy and safety of PB in T2D.

Acknowledgments

The authors acknowledge the Curtin Health Innovation Research Institute at Curtin University and the Curtin-seeding grant for their support and also acknowledge the use of equipment and the scientific and technical assistance of the Curtin University Electron Microscope Facility, which has been partially funded by the university, state, and commonwealth governments. The authors also acknowledge the Pharmaceutical Technology Laboratory for their valuable assistance (Curtin School of Pharmacy).

Disclosure

The authors report no conflicts of interest in this work.