49
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Suppression of synaptic plasticity by fullerenol in rat hippocampus in vitro

, , , &
Pages 4947-4955 | Published online: 28 Sep 2016
 

Abstract

Fullerenol, a water-soluble fullerene derivative, has attracted much attention due to its bioactive properties, including the antioxidative properties and free radical scavenging ability. Due to its superior nature, fullerenol represents a promising diagnostic, therapeutic, and protective agent. Therefore, elucidation of the possible side effects of fullerenol is important in determining its potential role. In the present study, we investigated the acute effects of 5 μM fullerenol on synaptic plasticity in hippocampal brain slices of rats. Incubation with fullerenol for 20 minutes significantly decreased the peak of paired-pulse facilitation and long-term potentiation, indicating that fullerenol suppresses the short- and long-term synaptic plasticity of region I of hippocampus. We found that fullerenol depressed the activity and the expression of nitric oxide (NO) synthase in hippocampus. In view of the important role of NO in synaptic plasticity, the inhibition of fullerenol on NO synthase may contribute to the suppression of synaptic plasticity. These findings may facilitate the evaluation of the side effects of fullerenol.

Acknowledgments

This work was supported by the National Basic Research Program of China (Grants 2012CB932502 and 2011CB504506), the National Natural Science Foundation of China (Grants 31170965, 81570915 and 81371503), the Natural Science Foundation of Anhui Province of China (Grant 1508085SQC203), and the Open Fund from CAS Key Laboratory of Brain Function and Diseases (2012–2013).

Disclosure

The authors report no conflicts of interest in this work.