190
Views
46
CrossRef citations to date
0
Altmetric
Original Research

Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery

, , , &
Pages 4553-4562 | Published online: 08 Sep 2016
 

Abstract

From previous studies, it has been found that curcumin exhibits an anti-inflammatory activity and is being used for the treatment of skin disorders; however, it is hydrophobic and has weak penetrating ability, resulting in poor drug transport through the stratum corneum. The aim of this study was to develop liquid crystalline systems for topical administration of curcumin for the treatment of inflammation. These liquid crystalline systems were developed from oleic acid, polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol, and water as the surfactant, oil phase, and aqueous phase, respectively. These systems were characterized, and polarized light microscopy showed anisotropy with lamellar mesophases (Formulation 1) and hexagonal mesophases (Formulations 2 and 3), which were confirmed by the peak ratio measured using small-angle X-ray scattering. In addition, rheological tests revealed that the formulations exhibited gel-like behavior (G′>G″), as evidenced by the increased G′ values that indicate structured systems. Texture profile analysis showed that hexagonal mesophases have high values of hardness, adhesiveness, and compressibility, which indicate structured systems. In vitro studies on bioadhesion revealed that the hexagonal mesophases increased the bioadhesiveness of the systems to the skin of the pig ear. An in vivo inflammation experiment showed that the curcumin-loaded hexagonal mesophase exhibited an anti-inflammatory activity as compared to the positive control (dexamethasone). The results suggest that this system has a potential to be used as a bioadhesive vehicle for the topical administration of curcumin. Therefore, it is possible to conclude that these systems can be used for the optimization of drug delivery systems to the skin.

Acknowledgments

The authors are grateful to Coordination for the Improvement of Higher Level Personnel (CAPES), National Council for Scientifc and Technological Development (CNPq) and Programa de Apoio ao Desenvolvimento Científico (PADC-FCF-UNESP) for financial support. This project was supported by São Paulo Research Foundation (FAPESP) by grant number: 13/03746-3; and 15/05394-2.

Author contributions

BFS designed the study, analyzed the data, and drafted the manuscript. AMS and CFR collaborated the in vivo anti-inflammatory experiments and contributed to the drafting of the manuscript. MPDG and MC coordinated the research and drafted the manuscript. All authors contributed toward data analysis, drafting and revising the paper and agree to be accountable for all aspects of the work.

Disclosure

The authors report no conflicts of interest in this work.