105
Views
26
CrossRef citations to date
0
Altmetric
Original Research

The influence of different long-circulating materials on the pharmacokinetics of liposomal vincristine sulfate

, , , &
Pages 4187-4197 | Published online: 26 Aug 2016
 

Abstract

Purpose

This study was designed to improve the in vivo pharmacokinetics of long-circulating vincristine sulfate (VS)-loaded liposomes; three different long-circulating materials, chitosan, poly(ethylene glycol)-1,2-distearoyl sn-glycero-3-phosphatidylethanolamine (PEG-DSPE), and poly(ethylene glycol)-poly-lactide-co-glycolide (PEG-PLGA), were evaluated at the same coating molar ratio with the commercial product Marqibo® (vincristine sulfate liposome injection [VSLI]).

Materials and methods

VS-loaded liposomes were prepared by a pH gradient method and were then coated with chitosan, PEG-DSPE, or PEG-PLGA. Physicochemical properties, including the morphology, particle size, zeta potential, encapsulation efficiency (EE%), pH, drug loading, and in vitro release, were determined. Preservation stability and pharmacokinetic studies were performed to compare the membrane-coated liposomes with either commercially available liposomes or the VS solution.

Results

The sphere-like morphology of the vesicles was confirmed by transmission electron microscope. Increased particle size, especially for the chitosan formulation, was observed after the coating process. However, the EE% was ~99.0% with drug loading at 2.0 mg/mL, which did not change after the coating process. The coating of long-circulation materials, except for chitosan, resulted in negatively charged and stable vesicles at physiological pH. The near-zero zeta potential exhibited by the PEG-DSPE formulation leads to a longer circulation lifetime and improved absorption for VS, when compared with the PEG-PLGA formulation. Compared with the commercial product, PEG was responsible for a higher plasma VS concentration and a longer half-life.

Conclusion

PEG-DSPE coating may be related to better absorption, based on the stability and a pharmacokinetic improvement in the blood circulation time.

Acknowledgments

Thanks to American Journal Experts for editing (Certificate Verification Key: 9883-3148-AE38-E7E5-4C98). The study was supported by the Natural Science Fund of Jiangxi Province (20123BBG70181 and 20151BAB215040), the Scientific Research Foundation of Traditional Chinese Medicine of Jiangxi Provincial Health Department (2014A018), National Natural Science Fund of China (81202927 and 81560575), and the Open fund of collaborative innovation center of Jiangxi University of Traditional Chinese Medicine (JXXT201403013).

Disclosure

The authors report no conflicts of interest in this work.