91
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Prevention of vaginal and rectal herpes simplex virus type 2 transmission in mice: mechanism of antiviral action

, , , , , & show all
Pages 2147-2162 | Published online: 19 May 2016
 

Abstract

Topical microbicides to stop sexually transmitted diseases, such as herpes simplex virus type 2 (HSV-2), are urgently needed. The emerging field of nanotechnology offers novel suitable tools for addressing this challenge. Our objective was to study, in vitro and in vivo, antiherpetic effect and antiviral mechanisms of several polyanionic carbosilane dendrimers with anti-HIV-1 activity to establish new potential microbicide candidates against sexually transmitted diseases. Plaque reduction assay on Vero cells proved that G2-S16, G1-S4, and G3-S16 are the dendrimers with the highest inhibitory response against HSV-2 infection. We also demonstrated that our dendrimers inhibit viral infection at the first steps of HSV-2 lifecycle: binding/entry-mediated events. G1-S4 and G3-S16 bind directly on the HSV-2, inactivating it, whereas G2-S16 adheres to host cell-surface proteins. Molecular modeling showed that G1-S4 binds better at binding sites on gB surface than G2-S16. Significantly better binding properties of G1-S4 than G2-S16 were found in an important position for affecting transition of gB trimer from G1-S4 prefusion to final postfusion state and in several positions where G1-S4 could interfere with gB/gH–gL interaction. We demonstrated that these polyanionic carbosilan dendrimers have a synergistic activity with acyclovir and tenofovir against HSV-2, in vitro. Topical vaginal or rectal administration of G1-S4 or G2-S16 prevents HSV-2 transmission in BALB/c mice in values close to 100%. This research represents the first demonstration that transmission of HSV-2 can be blocked by vaginal/rectal application of G1-S4 or G2-S16, providing a step forward to prevent HSV-2 transmission in humans.

Acknowledgments

This work was (partially) funded by the RD12/0017/0037, as part of the Acción Estratégica en Salud, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2008–2011 and cofinanced by Instituto de Salud Carlos III (Subdirección General de Evaluación) and Fondo Europeo de Desarrollo Regional, RETIC PT13/0010/0028, Fondo de Investigacion Sanitaria (grant number PI13/02016), CTQ2011-23245 (MIMECO), Comunidad de Madrid (grant numbers S-2010/BMD-2351 and S-2010/BMD-2332), CYTED 214RT0482. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008–2011, iniciativa INGENIO 2010, the Consolider Program, and CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The financial support of the Czech Science Foundation (project no GA15-05903S) is acknowledged.

Disclosure

The authors report no conflicts of interest in this work.