781
Views
12
CrossRef citations to date
0
Altmetric
Commentary

The role of protons in modern and biologically-guided radiotherapy

Pages 1124-1131 | Received 21 May 2010, Accepted 31 May 2010, Published online: 13 Sep 2010
 

Abstract

With the introduction of new biologically based imaging possibilities, a higher degree of individualisation and adaptation of radiotherapy will be possible. Better knowledge of the biology of the target and its sub-volumes will enable dose prescriptions tailored to the individual patients, tissues and sub-volumes. Repeated imaging during the course of treatment will in addition enable adaptation of the treatment to cope with anatomical, as well as biological changes of the patient and of the target tissues. To translate these bright future perspectives into significant improvements in clinical outcome, advanced tools to tailor the physical dose distributions are needed. The most conformal radiotherapy technique known to mankind and clinically available today is proton therapy; in particular Intensity Modulated Proton Therapy (IMPT) with active spot scanning can not only tailor the dose to the desired target, but also effectively avoid sensitive structures in the proximity of the target to a degree far better than other conformal techniques such as Intensity Modulated Radiotherapy with photons (IMRT). The development of IMPT is now mature enough for clinical introduction on a broad scale. Proton therapy is still more expensive than conventional radiotherapy, but with the present rapid increase in the number of proton facilities worldwide and new initiatives to improve efficiency, the difference in affordability will continue to decrease and in comparison with the benefits, soon diminish even further. Contrary to what is sometimes claimed, the demands for better physical dose distributions and better avoidance of non-target tissue, has never been higher. Prolonged expected survival in many groups of patients emphasises the need to reduce late toxicities. The success of concomitant systemic therapies, with their tendency to cause higher morbidity stresses even further the increased need for subtle dose-sculpting methodologies and tools. There is no contradiction between striving for better physical dose distributions and a more biologically based approach. On the contrary, physical dose distributions are the tools to which achieve a treatment that can meet the biological demands.

Acknowledgements

The author is grateful to Mrs Ingrid Kristensen, University Hospital of Skåne, Sweden, for preparing all the treatment plans and to Prof. Alan E Nahum, Clatterbridge Centre for Oncology, Wirral, UK, for valuable discussions and input.

Declaration of interest: The author report no conflicts of interest. The author alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.