1,151
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Clinical evaluation of 3D/3D MRI-CBCT automatching on brain tumors for online patient setup verification – A step towards MRI-based treatment planning

, , &
Pages 1085-1091 | Received 18 May 2010, Accepted 29 May 2010, Published online: 13 Sep 2010
 

Abstract

Background. Magnetic Resonance Imaging (MRI) is often used in modern day radiotherapy (RT) due to superior soft tissue contrast. However, treatment planning based solely on MRI is restricted due to e.g. the limitations of conducting online patient setup verification using MRI as reference. In this study 3D/3D MRI-Cone Beam CT (CBCT) automatching for online patient setup verification was investigated. Material and methods. Initially, a multi-modality phantom was constructed and used for a quantitative comparison of CT-CBCT and MRI-CBCT automatching. Following the phantom experiment three patients undergoing postoperative radiotherapy for malignant brain tumors received a weekly CBCT. In total 18 scans was matched with both CT and MRI as reference. The CBCT scans were acquired using a Clinac iX 2300 linear accelerator (Varian Medical Systems) with an On-Board Imager (OBI). Results. For the phantom experiment CT-CBCT and MRI-CBCT automatching resulted in similar results. A significant difference was observed only in the longitudinal direction where MRI-CBCT resulted in the best match (mean and standard deviations of 1.85±2.68 mm for CT and −0.05±2.55 mm for MRI). For the clinical experiment the absolute difference in couch shift coordinates acquired from MRI-CBCT and CT-CBCT automatching, were ≤2 mm in the vertical direction and ≤3 mm in the longitudinal and lateral directions. For yaw rotation differences up to 3.3 degrees were observed. Mean values and standard deviations were 0.8±0.6 mm, 1.5±1.2 mm and 1.2±1.2 mm for the vertical, longitudinal and lateral directions, respectively and 1.95±1.12 degrees for the rotation (n=17). Conclusion. It is feasible to use MRI as reference when conducting 3D/3D CBCT automatching for online patient setup verification. For both the phantom and clinical experiment MRI-CBCT performed similar to CT-CBCT automatching and significantly better in the longitudinal direction for the phantom experiment.

Acknowledgements

The department has in 2010 received funding from the Research Collaborations Program (Varian Medical Systems) for further investigations within the field of MRI-based radiotherapy planning and the subject of this study.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.