112
Views
3
CrossRef citations to date
0
Altmetric
Papers

The inhibiting activity of areca inflorescence extracts on human low density lipoprotein oxidation induced by cupric ion

, , , , , , , & show all
Pages 236-241 | Published online: 26 Sep 2011
 

Abstract

The oxidative modification of human low density lipoprotein (LDL) plays a significant role in atherosclerosis. In this study, the inhibiting activity of areca inflorescence extracts (AIEs) on LDL oxidation was investigated by an in vitro study with Trolox as the standard antioxidant. The kinetics of LDL oxidation, thiobarbituric acid reactive substances assay, ferric-reducing antioxidant power assay and copper chelation assay were also evaluated to assess the antioxidant activities of AIEs, and the results revealed that AIEs could delay the lag time and inhibit the formation of malondialdehyde in the process of LDL peroxidation induced by Cu2+. The boiled water extract displayed the highest antioxidant activity compared with the ambient water extract and ethanol extract. The total phenolic contents and phenolic components of AIEs were also measured by high performance liquid chromatography method. Epicatechin, gallic acid and coumalic acid were the primary phenolic acids in AIEs.

Declaration of interest: This work was supported by Hainan Natural Science Foundation (project No. 310101) and Hainan Key Scientific and Technological Projects (project No. 090138), respectively. The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.