578
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Antiproliferative effect on HepaRG cell cultures of new calix[4]arenes. Part II

, , , , , , , , , , & show all
Pages 204-215 | Received 19 Dec 2009, Accepted 23 Apr 2010, Published online: 14 Jun 2010
 

Abstract

Cell cycle progression is dependent on the intracellular iron level and chelators can lead to iron depletion and decrease cell proliferation. This antiproliferative effect can be inhibited by exogenous iron. In this work, we present the synthesis of some new synthetic calix[4]arene podands bearing diamino-tetraesters, diamino-tetraalcohols, diamino-tetraacid and tetraaryloxypentoxy groups at the lower rim, designed as potential iron chelators. We report their effect on cell proliferation, in comparison with the new oral chelator ICL670A (4-[3,5-bis-(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid). The antiproliferative effect of these new compounds was studied in the human hepatocarcinoma HepaRG cell cultures using cell nuclei counting after staining with the DNA intercalating fluorescence dye, Hoechst 33342. Their cytotoxicity was evaluated by the extracellular LDH activity. Preliminary results indicated that their antiproliferative effect was mainly due to their cytotoxicity. The efficiency of these compounds, being comparable to that of ICL670, was independent of iron depletion. This effect remains to be further explored. Moreover, it also shows that the new substituted calix[4]arenes could open the way to valuable new approaches for medicinal chemistry scaffolding.

Acknowledgements

The authors would like to thank Novartis Pharma Laboratories (Basel, Switzerland) for supplying ICL670A.

Declaration of interest

The authors have no competing interests as defined by Informa Healthcare journals Publishing Group, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.