2,642
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia

, , , &
Pages 115-129 | Received 01 Jun 2018, Accepted 16 Oct 2018, Published online: 12 Dec 2018

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (10)

Hayden Carlton, Matthias Weber, Maximilian Peters, Nageshwar Arepally, Yash Sharad Lad, Anshul Jaswal, Robert Ivkov, Anilchandra Attaluri & Patrick Goodwill. (2023) HYPER: pre-clinical device for spatially-confined magnetic particle hyperthermia. International Journal of Hyperthermia 40:1.
Read now
Sri Kamal Kandala, Anirudh Sharma, Sahar Mirpour, Eleni Liapi, Robert Ivkov & Anilchandra Attaluri. (2021) Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia. International Journal of Hyperthermia 38:1, pages 611-622.
Read now
Felista L. Tansi, Wisdom O. Maduabuchi, Melanie Hirsch, Paul Southern, Simon Hattersley, Rainer Quaas, Ulf Teichgräber, Quentin A. Pankhurst & Ingrid Hilger. (2021) Deep-tissue localization of magnetic field hyperthermia using pulse sequencing. International Journal of Hyperthermia 38:1, pages 743-754.
Read now
Harley F. Rodrigues, Gustavo Capistrano & Andris F. Bakuzis. (2020) In vivo magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning. International Journal of Hyperthermia 37:3, pages 76-99.
Read now
Anilchandra Attaluri, Sri Kamal Kandala, Haoming Zhou, Michele Wabler, Theodore L. DeWeese & Robert Ivkov. (2020) Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating. International Journal of Hyperthermia 37:3, pages 108-119.
Read now
Chun-Ting Yang, Preethi Korangath, Jackie Stewart, Chen Hu, Wei Fu, Cordula Grüttner, Sarah E. Beck, Feng-Huei Lin & Robert Ivkov. (2020) Systemically delivered antibody-labeled magnetic iron oxide nanoparticles are less toxic than plain nanoparticles when activated by alternating magnetic fields. International Journal of Hyperthermia 37:3, pages 59-75.
Read now
Paul R. Stauffer, Dario B. Rodrigues, Robert Goldstein, Thinh Nguyen, Yan Yu, Shuying Wan, Richard Woodward, Michael Gibbs, Ilya L. Vasilchenko, Alexey M. Osintsev, Voichita Bar-Ad, Dennis B. Leeper, Wenyin Shi, Kevin D. Judy & Mark D. Hurwitz. (2020) Feasibility of removable balloon implant for simultaneous magnetic nanoparticle heating and HDR brachytherapy of brain tumor resection cavities. International Journal of Hyperthermia 37:1, pages 1189-1201.
Read now
H. Petra Kok, Erik N. K. Cressman, Wim Ceelen, Christopher L. Brace, Robert Ivkov, Holger Grüll, Gail ter Haar, Peter Wust & Johannes Crezee. (2020) Heating technology for malignant tumors: a review. International Journal of Hyperthermia 37:1, pages 711-741.
Read now
Anilchandra Attaluri, John Jackowski, Anirudh Sharma, Sri Kamal Kandala, Valentin Nemkov, Chris Yakey, Theodore L. DeWeese, Ananda Kumar, Robert C. Goldstein & Robert Ivkov. (2020) Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia. International Journal of Hyperthermia 37:1, pages 1-14.
Read now
Arlene L. Oei, Preethi Korangath, Kathleen Mulka, Mikko Helenius, Jonathan B. Coulter, Jacqueline Stewart, Esteban Velarde, Johannes Crezee, Brian Simons, Lukas J. A. Stalpers, H. Petra Kok, Kathleen Gabrielson, Nicolaas A. P. Franken & Robert Ivkov. (2019) Enhancing the abscopal effect of radiation and immune checkpoint inhibitor therapies with magnetic nanoparticle hyperthermia in a model of metastatic breast cancer. International Journal of Hyperthermia 36:sup1, pages 47-63.
Read now

Articles from other publishers (26)

S. M. C. Hossain, J. B. Zakaria, M. Ferdows, M. Z. I. Bangalee, M. S. Alam & G. Zhao. (2024) Computer simulation-based nanothermal field and tissue damage analysis for cardiac tumor ablation. Medical & Biological Engineering & Computing 62:5, pages 1549-1567.
Crossref
Raíssa S. Fernandes & José G. Vivas Miranda. (2024) An agent-based model for studying the temperature changes on environments exposed to magnetic fluid hyperthermia. Computers in Biology and Medicine 170, pages 108053.
Crossref
Subeg Singh & Neeraj Kumar. 2024. Fluid Mechanics and Fluid Power, Volume 4. Fluid Mechanics and Fluid Power, Volume 4 755 766 .
Sandeep Nain, Neeraj Kumar & Pramod Kumar Avti. (2023) Tumor size dependent MNP dose evaluation in realistic breast tumor models for effective magnetic hyperthermia. Medical Engineering & Physics 121, pages 104065.
Crossref
Yash Lad, Avesh Jangam, Hayden Carlton, Ma’Moun Abu-Ayyad, Constantinos Hadjipanayis, Robert Ivkov, Brad E. Zacharia & Anilchandra Attaluri. (2023) Development of a Treatment Planning Framework for Laser Interstitial Thermal Therapy (LITT). Cancers 15:18, pages 4554.
Crossref
Marta Vicentini, Riccardo Ferrero & Alessandra Manzin. (2023) In Silico Experiments to Explore the Heating Efficiency of Magnetic Nanoparticles in Hyperthermia Preclinical Tests. Advanced Theory and Simulations 6:7.
Crossref
Anirudh Sharma, Avesh Avinash Jangam, Julian Low Yung Shen, Aiman Ahmad, Nageshwar Arepally, Hayden Carlton, Robert Ivkov & Anilchandra Attaluri. (2023) Design of a temperature-feedback controlled automated magnetic hyperthermia therapy device. Frontiers in Thermal Engineering 3.
Crossref
Anirudh Sharma, Avesh Jangam, Julian Low Yung Shen, Aiman Ahmad, Nageshwar Arepally, Benjamin Rodriguez, Joseph Borrello, Alexandros Bouras, Lawrence Kleinberg, Kai Ding, Constantinos Hadjipanayis, Dara L. Kraitchman, Robert Ivkov & Anilchandra Attaluri. (2023) Validation of a Temperature-Feedback Controlled Automated Magnetic Hyperthermia Therapy Device. Cancers 15:2, pages 327.
Crossref
Yundong Tang, Hang Su, Tao Jin & Rodolfo Cesar Costa Flesch. (2023) Adaptive PID Control Approach Considering Simulated Annealing Algorithm for Thermal Damage of Brain Tumor During Magnetic Hyperthermia. IEEE Transactions on Instrumentation and Measurement 72, pages 1-8.
Crossref
Sandeep Nain, Neeraj Kumar & Pramod Kumar Avti. (2022) Computational investigation of the tumor position and ambient conditions on magnetic nanoparticle thermo-therapy. Thermal Science and Engineering Progress 34, pages 101396.
Crossref
Anirudh Sharma, Erik Cressman, Anilchandra Attaluri, Dara L. Kraitchman & Robert Ivkov. (2022) Current Challenges in Image-Guided Magnetic Hyperthermia Therapy for Liver Cancer. Nanomaterials 12:16, pages 2768.
Crossref
Vahid Darvishi, Mahdi Navidbakhsh & Saeid Amanpour. (2021) Heat and mass transfer in the hyperthermia cancer treatment by magnetic nanoparticles. Heat and Mass Transfer 58:6, pages 1029-1039.
Crossref
Youngrong Park, Ananiya A. Demessie, Addie Luo, Olena R. Taratula, Abraham S. Moses, Peter Do, Leonardo Campos, Younes Jahangiri, Cory R. Wyatt, Hassan A. Albarqi, Khashayar Farsad, Ov D. Slayden & Oleh Taratula. (2022) Targeted Nanoparticles with High Heating Efficiency for the Treatment of Endometriosis with Systemically Delivered Magnetic Hyperthermia. Small 18:24.
Crossref
Sean Healy, Andris F. Bakuzis, Patrick W. Goodwill, Anilchandra Attaluri, Jeff W. M. Bulte & Robert Ivkov. (2022) Clinical magnetic hyperthermia requires integrated magnetic particle imaging. WIREs Nanomedicine and Nanobiotechnology 14:3.
Crossref
Amritpal Singh & Neeraj Kumar. (2022) Parameterizing the Effects of Tumor Shape in Magnetic Nanoparticle Thermotherapy Through a Computational Approach. Journal of Heat Transfer 144:3.
Crossref
Gerasimos Pefanis, Nikolaos Maniotis, Aikaterini-Rafailia Tsiapla, Antonios Makridis, Theodoros Samaras & Mavroeidis Angelakeris. (2022) Numerical Simulation of Temperature Variations during the Application of Safety Protocols in Magnetic Particle Hyperthermia. Nanomaterials 12:3, pages 554.
Crossref
Costas Papadopoulos, Argiris Kolokithas‐Ntoukas, Roberto Moreno, David Fuentes, George Loudos, Vassilios C. Loukopoulos & George C. Kagadis. (2021) Using kinetic Monte Carlo simulations to design efficient magnetic nanoparticles for clinical hyperthermia. Medical Physics 49:1, pages 547-567.
Crossref
Nickolas D. Polychronopoulos, Apostolos A. Gkountas, Ioannis E. Sarris & Leonidas A. Spyrou. (2021) A Computational Study on Magnetic Nanoparticles Hyperthermia of Ellipsoidal Tumors. Applied Sciences 11:20, pages 9526.
Crossref
Matteo Bruno Lodi, Giacomo Muntoni, Alessandro Ruggeri, Alessandro Fanti, Giorgio Montisci & Giuseppe Mazzarella. (2021) Towards the Robust and Effective Design of Hyperthermic Devices: Improvement of a Patch Antenna for the Case Study of Abdominal Rhabdomyosarcoma With 3D Perfusion. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 5:3, pages 197-205.
Crossref
Zachary R. Stephen & Miqin Zhang. (2020) Recent Progress in the Synergistic Combination of Nanoparticle‐Mediated Hyperthermia and Immunotherapy for Treatment of Cancer. Advanced Healthcare Materials 10:2.
Crossref
Danielle L. Stolley, Anna Colleen Crouch, Aliçan Özkan, Erin H. Seeley, Elizabeth M. Whitley, Marissa Nichole Rylander & Erik N. K. Cressman. (2020) Combining Chemistry and Engineering for Hepatocellular Carcinoma: Nano-Scale and Smaller Therapies. Pharmaceutics 12:12, pages 1243.
Crossref
Nickolas D. Polychronopoulos, Apostolos A. Gkountas, Ioannis E. Sarris & Leonidas A. Spyrou. (2020) Numerical Analysis of Temperature Distribution in Ellipsoidal Tumors in Magnetic Fluid Hyperthermia. Numerical Analysis of Temperature Distribution in Ellipsoidal Tumors in Magnetic Fluid Hyperthermia.
Gurmeet Singh, Neeraj Kumar & Pramod Kumar Avti. (2020) Computational evaluation of effectiveness for intratumoral injection strategies in magnetic nanoparticle assisted thermotherapy. International Journal of Heat and Mass Transfer 148, pages 119129.
Crossref
Hasan Al Faruque, Eun-Sook Choi, Hyo-Ryong Lee, Jung-Hee Kim, Sukho Park & Eunjoo Kim. (2020) Targeted removal of leukemia cells from the circulating system by whole-body magnetic hyperthermia in mice. Nanoscale 12:4, pages 2773-2786.
Crossref
Frederik Soetaert, Preethi Korangath, David Serantes, Steven Fiering & Robert Ivkov. (2020) Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Advanced Drug Delivery Reviews 163-164, pages 65-83.
Crossref
Matteo Bruno Lodi, Alessandro Fanti, Giacomo Muntoni & Giuseppe Mazzarella. (2019) A Multiphysic Model for the Hyperthermia Treatment of Residual Osteosarcoma Cells in Upper Limbs Using Magnetic Scaffolds. IEEE Journal on Multiscale and Multiphysics Computational Techniques 4, pages 337-347.
Crossref