4,090
Views
37
CrossRef citations to date
0
Altmetric
Reviews

Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment

, , , , , , , , , , , & show all
Pages 141-154 | Received 24 Jun 2020, Accepted 05 Nov 2020, Published online: 10 Jan 2021

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (2)

Priyadarshini Mohapatra, Mohanraj Gopikrishnan, George Priya Doss C & Natarajan Chandrasekaran. (2024) How Precise are Nanomedicines in Overcoming the Blood–Brain Barrier? A Comprehensive Review of the Literature. International Journal of Nanomedicine 19, pages 2441-2467.
Read now
Andris F. Bakuzis. (2020) Nanomedicine and thermal therapies: where are we going?. International Journal of Hyperthermia 37:3, pages 1-3.
Read now

Articles from other publishers (35)

Xulin Xie, Jiao Zhai, Xiaoyu Zhou, Zhengjun Guo, Pui‐Chi Lo, Guangyu Zhu, Kannie W. Y. Chan & Mengsu Yang. (2023) Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. Advanced Materials 36:17.
Crossref
Ulrich M. Engelmann, Beril Simsek, Ahmed Shalaby & Hans-Joachim Krause. (2024) Key Contributors to Signal Generation in Frequency Mixing Magnetic Detection (FMMD): An In Silico Study. Sensors 24:6, pages 1945.
Crossref
Nima Mirkhani, Michael G. Christiansen, Tinotenda Gwisai, Stefano Menghini & Simone Schuerle. (2024) Spatially selective delivery of living magnetic microrobots through torque-focusing. Nature Communications 15:1.
Crossref
Wei Mao, Wen Li & Xuguang Hu. (2024) Tumor hyperthermia research progress and application prospect in tumoroids (Review). Molecular and Clinical Oncology 20:4.
Crossref
Linxue Zhang, Qifan Li, Junxiao Liu, Zunyi Deng, Xueliang Zhang, Nuernisha Alifu, Xiaofeng Zhang, Zhong Yu, Yu Liu, Zhongwen Lan, Tianlong Wen & Ke Sun. (2024) Recent advances in functionalized ferrite nanoparticles: From fundamentals to magnetic hyperthermia cancer therapy. Colloids and Surfaces B: Biointerfaces 234, pages 113754.
Crossref
Ambar C. Velazquez-Albino, Aniela Nozka, Andrii Melnyk, Hayden J. Good & Carlos M. Rinaldi-Ramos. (2023) Post-synthesis Oxidation of Superparamagnetic Iron Oxide Nanoparticles to Enhance Magnetic Particle Imaging Performance. ACS Applied Nano Materials 7:1, pages 279-291.
Crossref
Siao Lei, Jie He, Pengli Gao, Yueqi Wang, Hui Hui, Yu An & Jie Tian. (2023) Magnetic Particle Imaging-Guided Hyperthermia for Precise Treatment of Cancer: Review, Challenges, and Prospects. Molecular Imaging and Biology 25:6, pages 1020-1033.
Crossref
Yundong 云东 Tang 汤, Ming 鸣 Chen 陈, Rodolfo C.C. Flesch & Tao 涛 Jin 金. (2023) Extraction method of nanoparticles concentration distribution from magnetic particle image and its application in thermal damage of magnetic hyperthermia. Chinese Physics B 32:9, pages 094401.
Crossref
Marianna Gerina, Marco Sanna Angotzi, Valentina Mameli, Veronika Gajdošová, Daniel N. Rainer, Milan Dopita, Nina-Juliane Steinke, David Aurélio, Jana Vejpravová & Dominika Zákutná. (2023) Size dependence of the surface spin disorder and surface anisotropy constant in ferrite nanoparticles. Nanoscale Advances 5:17, pages 4563-4570.
Crossref
Tereza Sojková, Giusy M. R. Rizzo, Alessandro Di Girolamo, Sahitya K. Avugadda, Nisarg Soni, Nathalie B. Milbrandt, Yu Hsin Tsai, Ivo Kuběna, Martin Sojka, Niccolò Silvestri, Anna Cristina Samia, Roman Gröger & Teresa Pellegrino. (2023) From Core–Shell FeO/Fe 3 O 4 to Magnetite Nanocubes: Enhancing Magnetic Hyperthermia and Imaging Performance by Thermal Annealing . Chemistry of Materials 35:16, pages 6201-6219.
Crossref
Ruslan Alekseevich Rytov & Nikolai Aleksandrovich Usov. (2023) Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field. Beilstein Journal of Nanotechnology 14, pages 485-493.
Crossref
Hao Zhang, Suping Li, Fei Chen, Xingming Ma & Mingying Liu. (2023) The therapeutic effect of PEI-Fe3O4/pYr-ads-8-5HRE-cfosp-IFNG albumin nanospheres combined with magnetic fluid hyperthermia on hepatoma. Frontiers in Oncology 13.
Crossref
Tuan-Anh Le, Minh Phu Bui & Jungwon Yoon. (2023) Development of Small-Rabbit-Scale Three-Dimensional Magnetic Particle Imaging System With Amplitude-Modulation-Based Reconstruction. IEEE Transactions on Industrial Electronics 70:3, pages 3167-3177.
Crossref
Takashi Nagai, Noriyasu Kawai, Masakazu Gonda, Keitaro Iida, Toshiki Etani, Daichi Kobayashi, Taku Naiki, Aya Naiki-Ito, Ryosuke Ando, Sataro Yamaguchi, Yuto Sugahara, Sakyo Ueno, Kaname Tsutsumiuchi, Toyoko Imae & Takahiro Yasui. (2023) Role of HIKESHI on Hyperthermia for Castration-Resistant Prostate Cancer and Application of a Novel Magnetic Nanoparticle with Carbon Nanohorn for Magnetic Hyperthermia. Pharmaceutics 15:2, pages 626.
Crossref
Lin Yin, Wei Li, Zhongwei Bian, Ziwei Chen, Yanjun Liu, Jing Zhong, Shuixing Zhang, Yang Du, Hui Hui & Jie Tian. (2023) A Streamlined 3-D Magnetic Particle Imaging System With a Two-Stage Excitation Feed-Through Compensation Strategy. IEEE Transactions on Instrumentation and Measurement 72, pages 1-10.
Crossref
Yu Shi, Chen Zhang, Chenxi Liu, Xinyong Ma & Zhe Liu. 2023. Visualized Medicine. Visualized Medicine 59 86 .
Ulrich M. Engelmann, Ali Mohammad Pourshahidi, Ahmed Shalaby & Hans-Joachim Krause. (2022) Probing particle size dependency of frequency mixing magnetic detection with dynamic relaxation simulation. Journal of Magnetism and Magnetic Materials 563, pages 169965.
Crossref
Serhat KÜÇÜKDERMENCİ. (2022) Mapping of Gradient Patterns Generated with Helmholtz Coils for Localized Magnetic Fluid Hyperthermia. Kocaeli Journal of Science and Engineering 5:2, pages 159-166.
Crossref
Yilian Fernández-Afonso, Laura Asín, Lilianne Beola, Raluca M. Fratila & Lucía Gutiérrez. (2022) Influence of Magnetic Nanoparticle Degradation in the Frame of Magnetic Hyperthermia and Photothermal Treatments. ACS Applied Nano Materials 5:11, pages 16220-16230.
Crossref
Federica Vurro, Marco Gerosa, Alice Busato, Matilde Muccilli, Emil Milan, Jeff Gaudet, Patrick Goodwill, James Mansfield, Enrico Forlin, Alessandro Negri, Filippo Gherlinzoni, Giovanni Morana, Michele Gottardi, Paolo Matteazzi, Max Wintermark, Adolfo Speghini & Pasquina Marzola. (2022) Doped Ferrite Nanoparticles Exhibiting Self-Regulating Temperature as Magnetic Fluid Hyperthermia Antitumoral Agents, with Diagnostic Capability in Magnetic Resonance Imaging and Magnetic Particle Imaging. Cancers 14:20, pages 5150.
Crossref
H. T. Kim Duong, Ashkan Abdibastami, Lucy Gloag, Liam Barrera, J. Justin Gooding & Richard D. Tilley. (2022) A guide to the design of magnetic particle imaging tracers for biomedical applications. Nanoscale 14:38, pages 13890-13914.
Crossref
Sarkar Siddique & James C. L. Chow. (2022) Recent Advances in Functionalized Nanoparticles in Cancer Theranostics. Nanomaterials 12:16, pages 2826.
Crossref
Y. I. Golovin, Alexander O. Zhigachev, N. L. Klyachko & D. Y. Golovin. (2022) Controlled localization of magnetic nanoparticle mechanical activation in suspension exposed to alternating magnetic field using gradient magnetic field. Journal of Nanoparticle Research 24:8.
Crossref
Sabrina Rotundo, Danilo Brizi, Alessandra Flori, Giulio Giovannetti, Luca Menichetti & Agostino Monorchio. (2022) Shaping and Focusing Magnetic Field in the Human Body: State-of-the Art and Promising Technologies. Sensors 22:14, pages 5132.
Crossref
Xue Yang, Guoqing Shao, Yanyan Zhang, Wei Wang, Yu Qi, Shuai Han & Hongjun Li. (2022) Applications of Magnetic Particle Imaging in Biomedicine: Advancements and Prospects. Frontiers in Physiology 13.
Crossref
Yusong Shen, Chaoen Hu, Peng Zhang, Jie Tian & Hui Hui. (2022) A novel software framework for magnetic particle imaging reconstruction. International Journal of Imaging Systems and Technology 32:4, pages 1119-1132.
Crossref
Serhat Küçükdermenci. (2022) Investigation of field free region formed by dual Halbach array for focused magnetic hyperthermia. Journal of Electrical Engineering 73:2, pages 152-157.
Crossref
Stanley Harvell-Smith, Le Duc Tung & Nguyen Thi Kim Thanh. (2022) Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. Nanoscale 14:10, pages 3658-3697.
Crossref
Gabriele Barrera, Paolo Allia & Paola Tiberto. (2022) Magnetic Nanoparticle Imaging: Insight on the Effects of Magnetic Interactions and Hysteresis of Tracers. ACS Applied Nano Materials 5:2, pages 2699-2714.
Crossref
Mingxia Jiang, Jun Zeng, Liping Zhao, Mogen Zhang, Jinlong Ma, Xiuwen Guan & Weifen Zhang. (2021) Chemotherapeutic drug-induced immunogenic cell death for nanomedicine-based cancer chemo–immunotherapy. Nanoscale 13:41, pages 17218-17235.
Crossref
Zhi Wei Tay, Prashant Chandrasekharan, Benjamin D. Fellows, Irati Rodrigo Arrizabalaga, Elaine Yu, Malini Olivo & Steven M. Conolly. (2021) Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers 13:21, pages 5285.
Crossref
Helena Gavilán, Sahitya Kumar Avugadda, Tamara Fernández-Cabada, Nisarg Soni, Marco Cassani, Binh T. Mai, Roy Chantrell & Teresa Pellegrino. (2021) Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chemical Society Reviews 50:20, pages 11614-11667.
Crossref
HIDEYUKI HASEGAWA. (2021) Nano-Particle Imaging for Magnetic Hyperthermia磁性ハイパーサーミアのためのナノ粒子イメージング. Thermal Medicine 37:3, pages 106-107.
Crossref
David Egea-Benavente, Jesús G. Ovejero, María del Puerto Morales & Domingo F. Barber. (2021) Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation. Cancers 13:18, pages 4583.
Crossref
Felisa Reyes-Ortega, Ángel Delgado & Guillermo Iglesias. (2021) Modulation of the Magnetic Hyperthermia Response Using Different Superparamagnetic Iron Oxide Nanoparticle Morphologies. Nanomaterials 11:3, pages 627.
Crossref