4,090
Views
37
CrossRef citations to date
0
Altmetric
Reviews

Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment

, , , , , , , , , , , & show all
Pages 141-154 | Received 24 Jun 2020, Accepted 05 Nov 2020, Published online: 10 Jan 2021

References

  • Ng EYK, Kumar SD, et al. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. Biomed Eng Online. 2017;16:36.
  • Guerin B, Villena J, Polimeridis A, et al. Computation of ultimate SAR amplification factors for radiofrequency hyperthermia in non-uniform body models: impact of frequency and tumour location. Int J Hyperthermia. 2018;34(1):87–100.
  • Huang HS, Hainfeld JF. Intravenous magnetic nanoparticle cancer hyperthermia. Int J Nanomed. 2013;8:2521–2532.
  • Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2008;24(6):467–474.
  • Savliwala S, Chiu-Lam A, Unni M, et al. Nanoparticles for biomedical applications. Elsevier, 2020. https://www.sciencedirect.com/science/article/pii/B9780128166628000138
  • Kumar CS, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev. 2011;63(9):789–808.
  • Fuller EG, Sun H, Dhavalikar RD, et al. Externally triggered heat and drug release from magnetically controlled nanocarriers. ACS Appl Polym Mater. 2019;1(2):211–220.
  • Chatterjee DK, Diagaradjane P, Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv. 2011;2(8):1001–1014.
  • Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002;3(8):487–497.
  • Torres-Lugo M, Rinaldi C. Thermal potentiation of chemotherapy by magnetic nanoparticles. Nanomedicine (Lond). 2013;8(10):1689–1707.
  • Rivera-Rodriguez A, Chiu-Lam A, Morozov VM, et al. Magnetic nanoparticle hyperthermia potentiates paclitaxel activity in sensitive and resistant breast cancer cells. Int J Nanomed. 2018;13:4771–4779.
  • Kobayashi T, Kakimi K, Nakayama E, et al. Antitumor immunity by magnetic nanoparticle-mediated hyperthermia. Nanomedicine (Lond). 2014;9(11):1715–1726.
  • Toraya-Brown S, Fiering S. Local tumour hyperthermia as immunotherapy for metastatic cancer. Int J Hyperthermia. 2014;30(8):531–539.
  • Yanase M, Shinkai M, Honda H, et al. Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Jpn J Cancer Res. 1998;89(7):775–782.
  • Suzuki M, Shinkai M, Honda H, et al. Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes. Melanoma Res. 2003;13(2):129–135.
  • Takada T, Yamashita T, Sato M, et al. Growth inhibition of re-challenge B16 melanoma transplant by conjugates of melanogenesis substrate and magnetite nanoparticles as the basis for developing melanoma-targeted chemo-thermo-immunotherapy. BioMed Res Int . 2009;2009:1–13.
  • Tong S, Zhu H, Bao G. Magnetic iron oxide nanoparticles for disease detection and therapy. Mater Today (Kidlington). 2019;31:86–99.
  • Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–324.
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):1–12.
  • Kut C, Zhang Y, Hedayati M, et al. Preliminary study of injury from heating systemically delivered, nontargeted dextran-superparamagnetic iron oxide nanoparticles in mice. Nanomedicine (Lond). 2012;7(11):1697–1711.
  • Hensley D, Tay ZW, Dhavalikar R, et al. Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Phys Med Biol. 2017;62(9):3483–3500.
  • Tay ZW, Chandrasekharan P, Chiu-Lam A, et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano. 2018;12(4):3699–3713.
  • Johannsen M, Gneveckow U, Eckelt L, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia. 2005;21(7):637–647.
  • Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214–1217.
  • Knopp T, Biederer S, Sattel TF, et al. Prediction of the spatial resolution of magnetic particle imaging using the modulation transfer function of the imaging process. IEEE Trans Med Imaging. 2011;30(6):1284–1292.
  • Rahmer J, Weizenecker J, Gleich B, et al. Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging. 2009; 9:4.
  • Franke J, Heinen U, Lehr H, et al. System characterization of a highly integrated preclinical hybrid MPI-MRI scanner. IEEE Trans Med Imaging. 2016;35(9):1993–2004.
  • Vogel P, Rückert MA, Klauer P, et al. Superspeed traveling wave magnetic particle imaging. IEEE Trans Magn. 2015;51(2):1–3.
  • Saritas EU, Goodwill PW, Croft LR, et al. Magnetic particle imaging (MPI) for NMR and MRI researchers. J Magn Reson. 2013; 229:116–126.
  • Chandrasekharan P, Tay ZW, Zhou XY, et al. Magnetic particle imaging for vascular, cellular and molecular imaging. In Ross BD, Gambhir SS, editors. Molecular imaging: principles and practice. San Diego: Elsevier.
  • Goodwill PW, Conolly SM. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging. 2010;29(11):1851–1859.
  • Haegele J, Rahmer J, Gleich B, et al. Magnetic particle imaging: visualization of instruments for cardiovascular intervention. Radiology. 2012;265(3):933–938.
  • Molwitz I, Ittrich H, Knopp T, et al. First magnetic particle imaging angiography in human-sized organs by employing a multimodal ex vivo pig kidney perfusion system. Physiol Meas. 2019;40(10):105002.
  • Zheng B, von See M, Yu E, et al. Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics. 2015;6(3):291–301.
  • Zheng B, Vazin T, Goodwill PW, et al. Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci Rep. 2015;5:14055.
  • Fidler F, Steinke M, Kraupner A, et al. Stem cell vitality assessment using magnetic particle spectroscopy. IEEE Trans Magn. 2015;51(2):1–4.
  • Orendorff R, Peck AJ, Zheng B, et al. First in vivo traumatic brain injury imaging via magnetic particle imaging. Phys Med Biol. 2017;62(9):3501–3509.
  • Orendorff R, Wendland M, Yu E, et al. First in vivo brain perfusion imaging using magnetic particle imaging. 2016 World Molecular Imaging Congress (WMIC 2016): Imaging Biology Improving Therapy. 2016.
  • Zhou XY, Jeffris KE, Yu EY, et al. First in vivo magnetic particle imaging of lung perfusion in rats. Phys Med Biol. 2017;62(9):3510–3522.
  • Tay ZW, Chandrasekharan P, Zhou XY, et al. In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring. Theranostics. 2018;8(13):3676–3687.
  • Nishimoto K, Mimura A, Aoki M, et al. Application of magnetic particle imaging to pulmonary imaging using nebulized magnetic nanoparticles. OJMI. 2015;05(02):49–55.
  • Yu EY, Bishop M, Zheng B, et al. Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett. 2017;17(3):1648–1654.
  • Yu EY, Chandrasekharan P, Berzon R, et al. Magnetic particle imaging for highly sensitive, quantitative, and safe in vivo gut bleed detection in a murine model. ACS Nano. 2017;11(12):12067–12076.
  • Rahmer J, Stehning C, Gleich B. Remote magnetic actuation using a clinical scale system. PLoS One. 2018;13(3):e0193546.
  • Rahmer J, Wirtz D, Bontus C, et al. Interactive magnetic catheter steering with 3-D real-time feedback using multi-color magnetic particle imaging. IEEE Trans Med Imaging. 2017;36(7):1449–1456.
  • Herz S, Vogel P, Dietrich P, et al. Magnetic particle imaging guided real-time percutaneous transluminal angioplasty in a phantom model. Cardiovasc Intervent Radiol. 2018;41(7):1100–1105.
  • Herz S, Vogel P, Kampf T, et al. Magnetic particle imaging-guided stenting. J Endovasc Ther. 2019;26(4):512–519.
  • Murase K, Aoki M, Banura N, et al. Usefulness of magnetic particle imaging for predicting the therapeutic effect of magnetic hyperthermia. OJMI. 2015;05(02):85–99.
  • Banura N, Mimura A, Nishimoto K, et al. Heat transfer simulation for optimization and treatment planning of magnetic hyperthermia using magnetic particle imaging. 2016;arXiv:1605.08139. https://arxiv.org/abs/1605.08139.
  • Chandrasekharan P, Tay ZW, Zhou XY, et al. A perspective on a rapid and radiation-free tracer imaging modality, magnetic particle imaging, with promise for clinical translation. Br J Radiol. 2018;91(1091):20180326.
  • Zhou XY, Tay ZW, Chandrasekharan P, et al. Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking. Curr Opin Chem Biol. 2018;45:131–138.
  • Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815–850.
  • Lu K, Goodwill PW, Saritas EU, et al. Linearity and shift invariance for quantitative magnetic particle imaging. IEEE Trans Med Imaging. 2013;32(9):1565–1575.
  • Lu M, Cohen M, Rieves D, et al. FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010; 85(5):315–319.
  • Nguyen PK, Riegler J, Wu JC. Stem cell imaging: from bench to bedside. Cell Stem Cell. 2014;14(4):431–444.
  • Srinivas M, Boehm-Sturm P, Figdor CG, et al. Labeling cells for in vivo tracking using (19)F MRI. Biomaterials. 2012;33(34):8830–8840.
  • Arami H, Khandhar A, Liggitt D, et al. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev. 2015;44(23):8576–8607.
  • Vogel P, Markert J, Rückert MA, et al. Magnetic particle imaging meets computed tomography: first simultaneous imaging. Sci Rep. 2019;9(1):12627.
  • Vogel P, Lother S, Ruckert MA, et al. MRI meets MPI: a bimodal MPI-MRI tomograph. IEEE Trans Med Imaging. 2014;33(10):1954–1959.
  • Chandrasekharan P, Tay ZW, Hensley D, et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications. Theranostics. 2020;10(7):2965–2981.
  • Dadfar SM, Camozzi D, Darguzyte M, et al. Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance. J Nanobiotechnol. 2020;18(1):13.
  • Bauer LM, Situ SF, Griswold MA, et al. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI). Nanoscale. 2016;8(24):12162–12169.
  • Sebastian AR, Ryu SH, Ko HM, et al. Design and control of field-free region using two permanent magnets for selective magnetic hyperthermia. IEEE Access. 2019;7:96094–96104.
  • Myrovali E, Maniotis N, Samaras T, et al. Spatial focusing of magnetic particle hyperthermia. Nanoscale Adv. 2020;2(1):408–416.
  • Maass M, Bente K, Ahlborg M, et al. Optimized compression of MPI system matrices using a symmetry-preserving secondary orthogonal transform. Int J Magnetic Particle Imaging. 2016;2.
  • Tay ZW, Hensley DW, Vreeland EC, et al. The relaxation wall: experimental limits to improving MPI spatial resolution by increasing nanoparticle core size. Biomed Phys Eng Express. 2017;3(3):035003:1–5.
  • Debye PJW. Polar molecules. Chemical Catalog Company, New York (NY): Incorporated; 1929.
  • Croft LR, Goodwill PW, Conolly SM. Relaxation in x-space magnetic particle imaging. IEEE Trans Med Imaging. 2012;31(12):2335–2342.
  • Croft LR, Goodwill PW, Price DA, et al. Effects of scanning rate on relaxation-induced blurring in magnetic particle image. 2013 International Workshop on Magnetic Particle Imaging (IWMPI) 2013
  • Dhavalikar R, Rinaldi C. Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients. J Magn Magn Mater. 2016;419:267–273.
  • Martsenyuk M, Raikher YL, Shliomis M. On the kinetics of magnetization of suspension of ferromagnetic particles. Soviet Physics-JETP. 1974; 38:413–416.
  • Soto-Aquino D, Rinaldi C. Magnetoviscosity in dilute ferrofluids from rotational Brownian dynamics simulations. Phys Rev E Stat Nonlin Soft Matter Phys. 2010;82(4 Pt 2):046310.
  • Soto-Aquino D, Rosso D, Rinaldi C. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling. Phys Rev E. 2011;84(5):056306.
  • Weaver JB, Rauwerdink AM, Hansen EW. Magnetic nanoparticle temperature estimation. Med Phys. 2009;36(5):1822–1829.
  • Zhong J, Liu W, Zhou M, et al. Magnetic nanoparticle temperature estimation using AC magnetic fied. 2013 International Workshop on Magnetic Particle Imaging (IWMPI). 2013.
  • Laurent S, Dutz S, Häfeli UO, et al. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166(1-2):8–23.
  • Perreard I, Reeves D, Zhang X, et al. Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times. Phys Med Biol. 2014;59(5):1109–1119.
  • Weaver JB, Kuehlert E. Measurement of magnetic nanoparticle relaxation time. Med Phys. 2012;39(5):2765–2770.
  • Tay ZW, Hensley D, Ma J, et al. Pulsed excitation in magnetic particle imaging. IEEE Trans Med Imaging. 2019;38(10):2389–2399.
  • Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia. 1994;10(4):457–483.
  • Goodwill PW, Saritas EU, Croft LR, et al. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater. 2012;24(28):3870–3877.
  • Goodwill PW, Lu K, Zheng B, et al. An X-space magnetic particle imaging scanner. Rev Sci Instrum. 2012;83(3):033708
  • Paysen H, Wells J, Kosch O, et al. Improved sensitivity and limit-of-detection using a receive-only coil in magnetic particle imaging. Phys Med Biol. 2018;63(13):13NT02.
  • Yu E, Zheng B, Tay ZW, et al. In vivo projection imaging and 3d computed tomography magnetic particle imaging with a high resolution 6 T/m field free line electromagnet. World Molecular Imaging Congress. 2016.
  • Goodwill PW, Scott GC, Stang PP, et al. Narrowband magnetic particle imaging. IEEE Trans Med Imaging. 2009;28(8):1231–1237.
  • Ludewig P, Gdaniec N, Sedlacik J, et al. Magnetic particle imaging for real-time perfusion imaging in acute stroke. ACS Nano. 2017;11(10):10480–10488.
  • Cruz MM, Ferreira LP, Alves AF, et al. Nanostructures for cancer therapy. Elsevier; 2017. https://www.sciencedirect.com/science/article/pii/B9780323461443000192
  • Ludwig F, Wawrzik T, Yoshida T, et al. Optimization of magnetic nanoparticles for magnetic particle imaging. IEEE Trans Magn. 2012;48(11):3780–3783.
  • Hasegawa D, Nakasaka S, Ogawa T, et al. Magnetization process of h.c.p.-CoIr nanoparticles with negative uniaxial magnetocrystalline anisotropy. IEEE Int Magnet Confer. 2006;42:848–848.
  • Eggeman AS, Majetich SA, Farrell D, et al. Size and concentration effects on high frequency hysteresis of iron oxide nanoparticles. IEEE Trans Magn. 2007;43(6):2451–2453.
  • Zheng W-W, Zhou K-R, Chen Z-W, et al. Characterization of focal hepatic lesions with SPIO-enhanced MRI. World J Gastroenterol. 2002;8(1):82–86.
  • Unni M, Uhl AM, Savliwala S, et al. Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano. 2017;11(2):2284–2303.
  • Khandhar AP, Ferguson RM, Simon JA, et al. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. J Biomed Mater Res A. 2012;100(3):728–737.
  • Mészáros I. Development of a novel vibrating sample magnetometer. Mater Sci Forum. 2007; 537–538:413–418.
  • Chen D. High-field ac susceptometer using Helmholtz coils as a magnetizer. Meas Sci Technol. 2004;15(6):1195–1202.
  • Tay ZW, Goodwill PW, Hensley DW, et al. A high-throughput, arbitrary-waveform, MPI spectrometer and relaxometer for comprehensive magnetic particle optimization and characterization. Sci Rep. 2016; 6:34180
  • Ferguson RM, Khandhar AP, Kemp SJ, et al. Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging. 2015;34(5):1077–1084.
  • Deissler RJ, Wu Y, Martens MA. Dependence of Brownian and Néel relaxation times on magnetic field strength. Med Phys. 2014;41(1):012301.
  • Irnich W, Schmitt F. Magnetostimulation in MRI. Magn Reson Med. 1995;33(5):619–623.
  • Chronik BA, Rutt BK. Simple linear formulation for magnetostimulation specific to MRI gradient coils. Magn Reson Med. 2001;45(5):916–919.
  • Guidance for the submission of premarket notifications for magnetic resonance diagnostic devices. Center for Devices and Radiologic Health, Food and Drug Administration. 1988.
  • International standard, medical equipment-part 2: particular requirements for the safety of magnetic resonance equipment for medical diagnosis, 2nd revision. International Electrotechnical Commission 60601-2-33. 2002.
  • Saritas EU, Goodwill PW, Zhang GZ, et al. Magnetostimulation limits in magnetic particle imaging. IEEE Trans Med Imaging. 2013;32(9):1600–1610.
  • Graeser M, Thieben F, Szwargulski P, et al. Human-sized magnetic particle imaging for brain applications. Nat Commun. 2019;10(1):9.
  • Kozissnik B, Bohorquez AC, Dobson J, et al. Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int J Hyperthermia. 2013;29(8):706–714.
  • Coffey W, Kalmykov YP. The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering, Vol. 27. World Scientific; 2012. https://www.worldscientific.com/worldscibooks/10.1142/8195
  • Croft LR, Goodwill PW, Konkle JJ, et al. Low drive field amplitude for improved image resolution in magnetic particle imaging. Med Phys. 2016;43(1):424.
  • Hensley D. Exploiting magnetic relaxation in X-space magnetic particle imaging. PhD dissertation, University of California, Berkeley, 2017.
  • Newton JM, Schofield D, Vlahopoulou J, et al. Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss. Biotechnol Prog. 2016;32(4):1069–1076.
  • Rodriguez-Luccioni HL, Latorre-Esteves M, Méndez-Vega J, et al. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. Int J Nanomed. 2011;6:373.
  • Wyllie A, Donahue V, Fischer B, et al. Apoptosis and cell proliferation. 1998. chapter 1, Roche Molecular Biochemicals. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/SAJ/Brochure/2/21552_Apoptosis.pdf
  • Kuimova MK, Botchway SW, Parker AW, et al. Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat Chem. 2009;1(1):69–73.
  • Nikolaev NI, Müller T, Williams DJ, et al. Changes in the stiffness of human mesenchymal stem cells with the progress of cell death as measured by atomic force microscopy. J Biomech. 2014;47(3):625–630.
  • Utkur M, Muslu Y, Saritas EU. Relaxation-based color magnetic particle imaging for viscosity mapping. Appl Phys Lett. 2019;115(15):152403.
  • Mason EE, Cooley CZ, Cauley SF, et al. Design analysis of an MPI human functional brain scanner. Int J Magn Part Imaging. 2017;3(1):1703008.
  • Goodwill PW, Konkle JJ, Zheng B, et al. Projection x-space magnetic particle imaging. IEEE Trans Med Imaging. 2012;31(5):1076–1085.
  • Zheng B, Goodwill PW, Dixit N, et al. Optimal broadband noise matching to inductive sensors: application to magnetic particle imaging. IEEE Trans Biomed Circuits Syst. 2017;11(5):1041–1052.