2,744
Views
95
CrossRef citations to date
0
Altmetric
Research Article

Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer

, , , , , , , , , & show all
Pages 359-374 | Received 19 Sep 2014, Accepted 05 Jan 2015, Published online: 26 Mar 2015

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (14)

Sri Kamal Kandala, Anirudh Sharma, Sahar Mirpour, Eleni Liapi, Robert Ivkov & Anilchandra Attaluri. (2021) Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia. International Journal of Hyperthermia 38:1, pages 611-622.
Read now
Harley F. Rodrigues, Gustavo Capistrano & Andris F. Bakuzis. (2020) In vivo magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning. International Journal of Hyperthermia 37:3, pages 76-99.
Read now
Anilchandra Attaluri, Sri Kamal Kandala, Haoming Zhou, Michele Wabler, Theodore L. DeWeese & Robert Ivkov. (2020) Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating. International Journal of Hyperthermia 37:3, pages 108-119.
Read now
Chun-Ting Yang, Preethi Korangath, Jackie Stewart, Chen Hu, Wei Fu, Cordula Grüttner, Sarah E. Beck, Feng-Huei Lin & Robert Ivkov. (2020) Systemically delivered antibody-labeled magnetic iron oxide nanoparticles are less toxic than plain nanoparticles when activated by alternating magnetic fields. International Journal of Hyperthermia 37:3, pages 59-75.
Read now
Paul R. Stauffer, Dario B. Rodrigues, Robert Goldstein, Thinh Nguyen, Yan Yu, Shuying Wan, Richard Woodward, Michael Gibbs, Ilya L. Vasilchenko, Alexey M. Osintsev, Voichita Bar-Ad, Dennis B. Leeper, Wenyin Shi, Kevin D. Judy & Mark D. Hurwitz. (2020) Feasibility of removable balloon implant for simultaneous magnetic nanoparticle heating and HDR brachytherapy of brain tumor resection cavities. International Journal of Hyperthermia 37:1, pages 1189-1201.
Read now
Anilchandra Attaluri, John Jackowski, Anirudh Sharma, Sri Kamal Kandala, Valentin Nemkov, Chris Yakey, Theodore L. DeWeese, Ananda Kumar, Robert C. Goldstein & Robert Ivkov. (2020) Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia. International Journal of Hyperthermia 37:1, pages 1-14.
Read now
Arlene L. Oei, Preethi Korangath, Kathleen Mulka, Mikko Helenius, Jonathan B. Coulter, Jacqueline Stewart, Esteban Velarde, Johannes Crezee, Brian Simons, Lukas J. A. Stalpers, H. Petra Kok, Kathleen Gabrielson, Nicolaas A. P. Franken & Robert Ivkov. (2019) Enhancing the abscopal effect of radiation and immune checkpoint inhibitor therapies with magnetic nanoparticle hyperthermia in a model of metastatic breast cancer. International Journal of Hyperthermia 36:sup1, pages 47-63.
Read now
Sri Kamal Kandala, Eleni Liapi, Louis L. Whitcomb, Anilchandra Attaluri & Robert Ivkov. (2019) Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia. International Journal of Hyperthermia 36:1, pages 115-129.
Read now
Keon Mahmoudi, Alexandros Bouras, Dominique Bozec, Robert Ivkov & Constantinos Hadjipanayis. (2018) Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. International Journal of Hyperthermia 34:8, pages 1316-1328.
Read now
Parisa Rezaie, Samideh Khoei, Sepideh Khoee, Sakine Shirvalilou & Seied Rabi Mahdavi. (2018) Evaluation of combined effect of hyperthermia and ionizing radiation on cytotoxic damages induced by IUdR-loaded PCL-PEG-coated magnetic nanoparticles in spheroid culture of U87MG glioblastoma cell line. International Journal of Radiation Biology 94:11, pages 1027-1037.
Read now
Pei-Shin Jiang, Hsin-Yu Tsai, Philip Drake, Fu-Nien Wang & Chi-Shiun Chiang. (2017) Gadolinium-doped iron oxide nanoparticles induced magnetic field hyperthermia combined with radiotherapy increases tumour response by vascular disruption and improved oxygenation. International Journal of Hyperthermia 33:7, pages 770-778.
Read now
Samira Eynali, Samideh Khoei, Sepideh Khoee & Elaheh Esmaelbeygi. (2017) Evaluation of the cytotoxic effects of hyperthermia and 5-fluorouracil-loaded magnetic nanoparticles on human colon cancer cell line HT-29. International Journal of Hyperthermia 33:3, pages 327-335.
Read now
Anilchandra Attaluri, Madhav Seshadri, Sahar Mirpour, Michele Wabler, Thomas Marinho, Muhammad Furqan, Haoming Zhou, Silvia De Paoli, Cordula Gruettner, Wesley Gilson, Theodore DeWeese, Monica Garcia, Robert Ivkov & Eleni Liapi. (2016) Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study. International Journal of Hyperthermia 32:5, pages 543-557.
Read now

Articles from other publishers (81)

Amit B. Tewari, Ritu Sharma & Deepika Sharma. (2023) Magnetic hyperthermia cancer therapy using rare earth metal-based nanoparticles: An investigation of Lanthanum strontium Manganite's hyperthermic properties. Results in Engineering 20, pages 101537.
Crossref
Patrícia Gomes, Bárbara Costa, João P. F. Carvalho, Paula I. P. Soares, Tânia Vieira, Célia Henriques, Manuel Almeida Valente & Sílvia Soreto Teixeira. (2023) Cobalt Ferrite Synthesized Using a Biogenic Sol–Gel Method for Biomedical Applications. Molecules 28:23, pages 7737.
Crossref
Sandeep Nain, Neeraj Kumar & Pramod Kumar Avti. (2023) Tumor size dependent MNP dose evaluation in realistic breast tumor models for effective magnetic hyperthermia. Medical Engineering & Physics 121, pages 104065.
Crossref
Yundong 云东 Tang 汤, Ming 鸣 Chen 陈, Rodolfo C.C. Flesch & Tao 涛 Jin 金. (2023) Extraction method of nanoparticles concentration distribution from magnetic particle image and its application in thermal damage of magnetic hyperthermia. Chinese Physics B 32:9, pages 094401.
Crossref
Victor G. Rivera‐Llabres, Kara N. Gentry, Matthew Po & Carlos M. Rinaldi‐Ramos. (2023) Size Tunable Fabrication of Magnetic Alginate Microparticles Using Flow Focusing Microfluidics. Particle & Particle Systems Characterization 40:8.
Crossref
Marta Vicentini, Riccardo Ferrero & Alessandra Manzin. (2023) In Silico Experiments to Explore the Heating Efficiency of Magnetic Nanoparticles in Hyperthermia Preclinical Tests. Advanced Theory and Simulations 6:7.
Crossref
V. Rivera-Llabres, K. Gentry & C. M. Rinaldi-Ramos. 2023. Magnetic Soft Matter. Magnetic Soft Matter 410 445 .
Jorge L Castro-Torres, Janet Méndez, Madeline Torres-Lugo & Eduardo Juan. (2023) Development of handheld induction heaters for magnetic fluid hyperthermia applications and in-vitro evaluation on ovarian and prostate cancer cell lines. Biomedical Physics & Engineering Express 9:3, pages 035010.
Crossref
Yundong Tang, Yuesheng Wang, Rodolfo C C Flesch & Tao Jin. (2023) Effect of porous heat transfer model on different equivalent thermal dose methods considering an experiment-based nanoparticle distribution during magnetic hyperthermia. Journal of Physics D: Applied Physics 56:14, pages 145402.
Crossref
Daniel Rivera, Alexander J. Schupper, Alexandros Bouras, Maria Anastasiadou, Lawrence Kleinberg, Dara L. Kraitchman, Anilchandra Attaluri, Robert Ivkov & Constantinos G. Hadjipanayis. (2023) Neurosurgical Applications of Magnetic Hyperthermia Therapy. Neurosurgery Clinics of North America 34:2, pages 269-283.
Crossref
Bharath Govindan, Muhammad Ashraf Sabri, Abdul Hai, Fawzi Banat & Mohammad Abu Haija. (2023) A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 15:3, pages 868.
Crossref
Gurmeet Singh, Amritpal Singh, Neeraj Kumar & Pramod Avti. (2023) Effects of injection rates and tissue diffusivity in magnetic nano-particle hyperthermia. Medical Engineering & Physics 113, pages 103965.
Crossref
Anirudh Sharma, Avesh Avinash Jangam, Julian Low Yung Shen, Aiman Ahmad, Nageshwar Arepally, Hayden Carlton, Robert Ivkov & Anilchandra Attaluri. (2023) Design of a temperature-feedback controlled automated magnetic hyperthermia therapy device. Frontiers in Thermal Engineering 3.
Crossref
Manpreet Singh. (2023) Biological heat and mass transport mechanisms behind nanoparticles migration revealed under microCT image guidance. International Journal of Thermal Sciences 184, pages 107996.
Crossref
Tieu Ngoc Nguyen, Imène Chebbi, Raphaël Le Fèvre, François Guyot & Edouard Alphandéry. (2023) Non-pyrogenic highly pure magnetosomes for efficient hyperthermia treatment of prostate cancer. Applied Microbiology and Biotechnology 107:4, pages 1159-1176.
Crossref
Anirudh Sharma, Avesh Jangam, Julian Low Yung Shen, Aiman Ahmad, Nageshwar Arepally, Benjamin Rodriguez, Joseph Borrello, Alexandros Bouras, Lawrence Kleinberg, Kai Ding, Constantinos Hadjipanayis, Dara L. Kraitchman, Robert Ivkov & Anilchandra Attaluri. (2023) Validation of a Temperature-Feedback Controlled Automated Magnetic Hyperthermia Therapy Device. Cancers 15:2, pages 327.
Crossref
Satish Sharma, Supriya D. Mahajan, Kent Chevli, Stanley A. Schwartz & Ravikumar Aalinkeel. (2023) Nanotherapeutic Approach to Delivery of Chemo- and Gene Therapy for Organ-Confined and Advanced Castration-Resistant Prostate Cancer. Critical Reviews™ in Therapeutic Drug Carrier Systems 40:4, pages 69-100.
Crossref
Nandyala Mahesh, Neetu Singh & Prabal Talukdar. (2023) A mathematical model of intratumoral infusion, particle distribution and heat transfer in cancer tumors: In-silico investigation of magnetic nanoparticle hyperthermia. International Journal of Thermal Sciences 183, pages 107887.
Crossref
Mohammad-Nabil Savari & Ali JabaliMohammad-Nabil Savari & Ali Jabali. 2023. Theranostic Iron-Oxide Based Nanoplatforms in Oncology. Theranostic Iron-Oxide Based Nanoplatforms in Oncology 129 240 .
Hussam Baghdadi & Salah Mohamed El Sayed. 2023. Handbook of Animal Models and its Uses in Cancer Research. Handbook of Animal Models and its Uses in Cancer Research 985 1001 .
Soraya Emamgholizadeh Minaei, Samideh Khoei, Sepideh Khoee & Seied Rabi Mahdavi. (2022) Sensitization of glioblastoma cancer cells to radiotherapy and magnetic hyperthermia by targeted temozolomide-loaded magnetite tri-block copolymer nanoparticles as a nanotheranostic agent. Life Sciences 306, pages 120729.
Crossref
Jacqueline L. Pasek-Allen, Saurin Kantesaria, Lakshya Gangwar, Qi Shao, Zhe Gao, Djaudat Idiyatullin, Zonghu Han, Michael L. Etheridge, Michael Garwood, Bharathi D. Jagadeesan & John C. Bischof. (2022) Injectable and Repeatable Inductive Heating of Iron Oxide Nanoparticle-Enhanced “PHIL” Embolic toward Tumor Treatment. ACS Applied Materials & Interfaces 14:37, pages 41659-41670.
Crossref
Sandeep Nain, Neeraj Kumar & Pramod Kumar Avti. (2022) Computational investigation of the tumor position and ambient conditions on magnetic nanoparticle thermo-therapy. Thermal Science and Engineering Progress 34, pages 101396.
Crossref
Marta Vicentini, Marta Vassallo, Riccardo Ferrero, Ioannis Androulakis & Alessandra Manzin. (2022) In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia. Computer Methods and Programs in Biomedicine 223, pages 106975.
Crossref
Manpreet Singh. (2022) Incorporating vascular-stasis based blood perfusion to evaluate the thermal signatures of cell-death using modified Arrhenius equation with regeneration of living tissues during nanoparticle-assisted thermal therapy. International Communications in Heat and Mass Transfer 135, pages 106046.
Crossref
Satarou YamaguchiYosuke IwataKaname Tsutsumiuchi, Yoshitomo Ikai, Takuya Sueo, Noriyasu Kawai & Teruo Mori. (2022) A Small Hyperthermia Device of Magnetic Nanoparticle and its Extension to Human-body-size Device磁性ナノ粒子用がん温熱療法小型装置の試作とスケール則によるヒト用大型装置の検討. IEEJ Transactions on Electronics, Information and Systems 142:5, pages 506-512.
Crossref
Sean Healy, Andris F. Bakuzis, Patrick W. Goodwill, Anilchandra Attaluri, Jeff W. M. Bulte & Robert Ivkov. (2022) Clinical magnetic hyperthermia requires integrated magnetic particle imaging. WIREs Nanomedicine and Nanobiotechnology 14:3.
Crossref
Serhat Küçükdermenci. (2022) Investigation of field free region formed by dual Halbach array for focused magnetic hyperthermia. Journal of Electrical Engineering 73:2, pages 152-157.
Crossref
Amritpal Singh & Neeraj Kumar. (2022) Parameterizing the Effects of Tumor Shape in Magnetic Nanoparticle Thermotherapy Through a Computational Approach. Journal of Heat Transfer 144:3.
Crossref
Gerasimos Pefanis, Nikolaos Maniotis, Aikaterini-Rafailia Tsiapla, Antonios Makridis, Theodoros Samaras & Mavroeidis Angelakeris. (2022) Numerical Simulation of Temperature Variations during the Application of Safety Protocols in Magnetic Particle Hyperthermia. Nanomaterials 12:3, pages 554.
Crossref
Xiaoqi Liao, Seda Ulusoy, Rui Huang, Erik Wetterskog, Klas Gunnarsson, Yu Wang, Huawei Liang, Yu-Jia Zeng, German Salazar-Alvarez & Peter Svedlindh. (2021) Low-field-induced spin-glass behavior and controllable anisotropy in nanoparticle assemblies at a liquid-air interface低场诱导液–气界面纳米颗粒组装体自旋玻璃行为和可控各向异性. Science China Materials 65:1, pages 193-200.
Crossref
Hussam Baghdadi & Salah Mohamed El Sayed. 2022. Handbook of Animal Models and its Uses in Cancer Research. Handbook of Animal Models and its Uses in Cancer Research 1 17 .
Natalia E. Kazantseva, Ilona S. Smolkova, Vladimir Babayan, Jarmila Vilčáková, Petr Smolka & Petr Saha. (2021) Magnetic Nanomaterials for Arterial Embolization and Hyperthermia of Parenchymal Organs Tumors: A Review. Nanomaterials 11:12, pages 3402.
Crossref
Jesus G. Ovejero, Federico Spizzo, M. Puerto Morales & Lucia Del Bianco. (2021) Nanoparticles for Magnetic Heating: When Two (or More) Is Better Than One. Materials 14:21, pages 6416.
Crossref
Helena Gavilán, Sahitya Kumar Avugadda, Tamara Fernández-Cabada, Nisarg Soni, Marco Cassani, Binh T. Mai, Roy Chantrell & Teresa Pellegrino. (2021) Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chemical Society Reviews 50:20, pages 11614-11667.
Crossref
Nickolas D. Polychronopoulos, Apostolos A. Gkountas, Ioannis E. Sarris & Leonidas A. Spyrou. (2021) A Computational Study on Magnetic Nanoparticles Hyperthermia of Ellipsoidal Tumors. Applied Sciences 11:20, pages 9526.
Crossref
Namdev Dhas, Ritu Kudarha, Abhijeet Pandey, Ajinkya N. Nikam, Shilpa Sharma, Ashutosh Singh, Atul Garkal, Kartik Hariharan, Amanpreet Singh, Priyanka Bangar, Dattatray Yadhav, Dhaivat Parikh, Krutika Sawant, Srinivas Mutalik, Neha Garg & Tejal Mehta. (2021) Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. Journal of Controlled Release 333, pages 188-245.
Crossref
Sakine Shirvalilou, Samideh Khoei, Azam Janati Esfahani, Mahboobeh Kamali, Milad Shirvaliloo, Roghayeh Sheervalilou & Parvin Mirzaghavami. (2021) Magnetic Hyperthermia as an adjuvant cancer therapy in combination with radiotherapy versus radiotherapy alone for recurrent/progressive glioblastoma: a systematic review. Journal of Neuro-Oncology 152:3, pages 419-428.
Crossref
Jesus G. Ovejero, Federico Spizzo, M. Puerto Morales & Lucia Del Bianco. (2021) Mixing iron oxide nanoparticles with different shape and size for tunable magneto-heating performance. Nanoscale 13:11, pages 5714-5729.
Crossref
Keywan Mortezaee, Asghar Narmani, Majid Salehi, Hamed Bagheri, Bagher Farhood, Hamed Haghi-Aminjan & Masoud Najafi. (2021) Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sciences 269, pages 119020.
Crossref
Aaron Jaufenthaler, Thomas Kornack, Victor Lebedev, Mark E. Limes, Rainer Körber, Maik Liebl & Daniel Baumgarten. (2021) Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles. Sensors 21:4, pages 1212.
Crossref
Mohammadhossein Shahsavari Alavijeh, Milad Salimi Bani, Iman Rad, Shadie Hatamie, Mahsa Soufi Zomorod & Mohammad Haghpanahi. (2021) Antibacterial properties of ferrimagnetic and superparamagnetic nanoparticles: a comparative study. Journal of Mechanical Science and Technology 35:2, pages 815-821.
Crossref
Matteo Avolio, Claudia Innocenti, Alessandro Lascialfari, Manuel Mariani & Claudio Sangregorio. 2021. New Trends in Nanoparticle Magnetism. New Trends in Nanoparticle Magnetism 327 351 .
Zhongzhou Du, Dandan Wang, Yi Sun, Yuki Noguchi, Shi Bai & Takashi Yoshida. (2020) Empirical Expression for AC Magnetization Harmonics of Magnetic Nanoparticles under High-Frequency Excitation Field for Thermometry. Nanomaterials 10:12, pages 2506.
Crossref
Mohammadhossein Shahsavari Alavijeh, Adel Maghsoudpour, Morteza Khayat, Iman Rad & Shadie Hatamie. (2020) Distribution of “molybdenum disulfide/cobalt ferrite” nanocomposite in animal model of breast cancer, following injection via differential infusion flow rates. Journal of Pharmaceutical Investigation 50:6, pages 583-592.
Crossref
Hossein Etemadi & Paul G. Plieger. (2020) Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. Advanced Therapeutics 3:11.
Crossref
Hassan A. Albarqi, Ananiya A. Demessie, Fahad Y. Sabei, Abraham S. Moses, Mikkel N. Hansen, Pallavi Dhagat, Olena R. Taratula & Oleh Taratula. (2020) Systemically Delivered Magnetic Hyperthermia for Prostate Cancer Treatment. Pharmaceutics 12:11, pages 1020.
Crossref
Yijue Wang, Liqing Zou, Zhe Qiang, Jianhai Jiang, Zhengfei Zhu & Jie Ren. (2020) Enhancing Targeted Cancer Treatment by Combining Hyperthermia and Radiotherapy Using Mn–Zn Ferrite Magnetic Nanoparticles. ACS Biomaterials Science & Engineering 6:6, pages 3550-3562.
Crossref
Meysam Soleymani, Mohammad Velashjerdi, Zhila Shaterabadi & Aboulfazl Barati. (2020) One-pot preparation of hyaluronic acid‐coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Carbohydrate Polymers 237, pages 116130.
Crossref
D. Lazič, I. Malaescu, O.M. Bunoiu, I. Marin, F.G. Popescu, V. Socoliuc & C.N. Marin. (2020) Investigation of therapeutic-like irradiation effect on magnetic hyperthermia characteristics of a water-based ferrofluid with magnetite particles. Journal of Magnetism and Magnetic Materials 502, pages 166605.
Crossref
Meysam Soleymani, Solmaz Khalighfard, Saeed Khodayari, Hamid Khodayari, Mohammad Reza Kalhori, Mahmoud Reza Hadjighassem, Zhila Shaterabadi & Ali Mohammad Alizadeh. (2020) Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Scientific Reports 10:1.
Crossref
Gurmeet Singh, Neeraj Kumar & Pramod Kumar Avti. (2020) Computational evaluation of effectiveness for intratumoral injection strategies in magnetic nanoparticle assisted thermotherapy. International Journal of Heat and Mass Transfer 148, pages 119129.
Crossref
Ghizlane Choukrani, Bikendra Maharjan, Chan Hee Park, Cheol Sang Kim & Arathyram Ramachandra Kurup Sasikala. (2020) Biocompatible superparamagnetic sub-micron vaterite particles for thermo-chemotherapy: From controlled design to in vitro anticancer synergism. Materials Science and Engineering: C 106, pages 110226.
Crossref
Frederik Soetaert, Preethi Korangath, David Serantes, Steven Fiering & Robert Ivkov. (2020) Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Advanced Drug Delivery Reviews 163-164, pages 65-83.
Crossref
Julia V. Nuzhina, Alexander A. Shtil, Artur Y. Prilepskii & Vladimir V. Vinogradov. (2019) Preclinical Evaluation and Clinical Translation of Magnetite-Based Nanomedicines. Journal of Drug Delivery Science and Technology 54, pages 101282.
Crossref
Zoe Boekelheide, Jackson T. Miller, Cordula Grüttner & Cindi L. Dennis. (2019) The effects of intraparticle structure and interparticle interactions on the magnetic hysteresis loop of magnetic nanoparticles. Journal of Applied Physics 126:4.
Crossref
Xiaofeng Chen, Jibin Song, Xiaoyuan Chen & Huanghao Yang. (2019) X-ray-activated nanosystems for theranostic applications. Chemical Society Reviews 48:11, pages 3073-3101.
Crossref
Milaine Roet, Sarah-Anna Hescham, Ali Jahanshahi, Bart P.F. Rutten, Polina O. Anikeeva & Yasin Temel. (2019) Progress in neuromodulation of the brain: A role for magnetic nanoparticles?. Progress in Neurobiology 177, pages 1-14.
Crossref
Denis A. Pankratov & Mariya M. Anuchina. (2019) Nature-inspired synthesis of magnetic non-stoichiometric Fe3O4 nanoparticles by oxidative in situ method in a humic medium. Materials Chemistry and Physics 231, pages 216-224.
Crossref
Justin Cohen, Akbar Anvari, Santanu Samanta, Yannick Poirier, Sandrine Soman, Allen Alexander, Maida Ranjbar, Ramilda Pavlovic, Andrew Zodda, Isabel L Jackson, Javed Mahmood, Zeljko Vujaskovic & Amit Sawant. (2019) Mild hyperthermia as a localized radiosensitizer for deep-seated tumors: investigation in an orthotopic prostate cancer model in mice. The British Journal of Radiology 92:1095, pages 20180759.
Crossref
Seyed Mohammadali Dadfar, Karolin Roemhild, Natascha I. Drude, Saskia von Stillfried, Ruth Knüchel, Fabian Kiessling & Twan Lammers. (2019) Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Advanced Drug Delivery Reviews 138, pages 302-325.
Crossref
Muhammad Raza Shah, Muhammad Imran & Shafi Ullah. 2019. Nanocarriers for Cancer Diagnosis and Targeted Chemotherapy. Nanocarriers for Cancer Diagnosis and Targeted Chemotherapy 247 266 .
Irina Negut & Valentina Grumezescu. 2019. Biomedical Applications of Nanoparticles. Biomedical Applications of Nanoparticles 63 90 .
Zhonglei He, Kangze Liu, Hugh J. Byrne, Patrick J. Cullen, Furong Tian & James F. Curtin. 2019. Applications of Targeted Nano Drugs and Delivery Systems. Applications of Targeted Nano Drugs and Delivery Systems 191 219 .
Vahid Darvishi, Mahdi Navidbakhsh & Saeid Amanpour. (2018) Effects of temperature distribution in the tissue around the tumor on the quality of hyperthermia. Effects of temperature distribution in the tissue around the tumor on the quality of hyperthermia.
Diogo Silva Pellosi, Patricia Pereira Macaroff, Paulo Cesar Morais & Antonio Claudio Tedesco. (2018) Magneto low-density nanoemulsion (MLDE): A potential vehicle for combined hyperthermia and photodynamic therapy to treat cancer selectively. Materials Science and Engineering: C 92, pages 103-111.
Crossref
Alfonso Toro-Cordova, Mario Flores-Cruz, Jaime Santoyo-Salazar, Ernesto Carrillo-Nava, Rafael Jurado, Pavel Figueroa-Rodriguez, Pedro Lopez-Sanchez, Luis Medina & Patricia Garcia-Lopez. (2018) Liposomes Loaded with Cisplatin and Magnetic Nanoparticles: Physicochemical Characterization, Pharmacokinetics, and In-Vitro Efficacy. Molecules 23:9, pages 2272.
Crossref
Lauren E. Woodard, Cindi L. Dennis, Julie A. Borchers, Anilchandra Attaluri, Esteban Velarde, Charlene Dawidczyk, Peter C. Searson, Martin G. Pomper & Robert Ivkov. (2018) Nanoparticle architecture preserves magnetic properties during coating to enable robust multi-modal functionality. Scientific Reports 8:1.
Crossref
Ming-Hui He, Li Chen, Ting Zheng, Yu Tu, Qian He, Hua-Lin Fu, Ju-Chun Lin, Wei Zhang, Gang Shu, Lili He & Zhi-Xiang Yuan. (2018) Potential Applications of Nanotechnology in Urological Cancer. Frontiers in Pharmacology 9.
Crossref
Spiridon Spirou, Martina Basini, Alessandro Lascialfari, Claudio Sangregorio & Claudia Innocenti. (2018) Magnetic Hyperthermia and Radiation Therapy: Radiobiological Principles and Current Practice †. Nanomaterials 8:6, pages 401.
Crossref
C L Dennis, A J Jackson, J A Borchers, C Gruettner & R Ivkov. (2018) Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid. Nanotechnology 29:21, pages 215705.
Crossref
A. Majid, W. Ahmed, Y. Patil-Sen & T. Sen. 2018. Micro and Nanomanufacturing Volume II. Micro and Nanomanufacturing Volume II 413 442 .
A Drayton, J Zehner, J Timmis, V Patel, G Vallejo-Fernandez & K O’Grady. (2017) A comparative measurement technique of nanoparticle heating for magnetic hyperthermia applications. Journal of Physics D: Applied Physics 50:49, pages 495003.
Crossref
Suriyanto, E. Y. K. Ng & S. D. Kumar. (2017) Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. BioMedical Engineering OnLine 16:1.
Crossref
Pallabita Chowdhury, Allison M. Roberts, Sheema Khan, Bilal B. Hafeez, Subhash C. Chauhan, Meena Jaggi & Murali M. Yallapu. (2017) Magnetic nanoformulations for prostate cancer. Drug Discovery Today 22:8, pages 1233-1241.
Crossref
Guosheng Song, Liang Cheng, Yu Chao, Kai Yang & Zhuang Liu. (2017) Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy. Advanced Materials 29:32.
Crossref
Brogan McWilliams, Hongwang Wang, Valerie Binns, Sergio Curto, Stefan Bossmann & Punit Prakash. (2017) Experimental Investigation of Magnetic Nanoparticle-Enhanced Microwave Hyperthermia. Journal of Functional Biomaterials 8:3, pages 21.
Crossref
Sitki Aktas, Stuart C. Thornton, Chris Binns & Phil Denby. (2016) Gas phase synthesis of core-shell Fe@FeO x magnetic nanoparticles into fluids. Journal of Nanoparticle Research 18:12.
Crossref
Jaber Beik, Ziaeddin Abed, Fatemeh S. Ghoreishi, Samira Hosseini-Nami, Saeed Mehrzadi, Ali Shakeri-Zadeh & S. Kamran Kamrava. (2016) Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release 235, pages 205-221.
Crossref
Rubbel Singla, Anika Guliani, Avnesh Kumari & Sudesh Kumar Yadav. 2016. Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration. Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration 41 80 .
Dmitri Artemov & Zaver M. Bhujwalla. 2016. Intracellular Delivery III. Intracellular Delivery III 301 322 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.