1,017
Views
132
CrossRef citations to date
0
Altmetric
Original Article

Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies

, , , , , & show all
Pages 313-325 | Received 29 Sep 2013, Accepted 26 May 2014, Published online: 01 Jul 2014

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (10)

A. Valeriano, F. Bondaug, I. Ebardo, P. Almonte, M.A. Sabugaa, J.R. Bagnol, M.J. Latayada, J.M. Macalalag, B.D. Paradero, M. Mayes, M. Balanay, A. Alguno & R. Capangpangan. (2023) Predicting cytotoxicity of engineered nanoparticles using regularized regression models: an in silico approach. SAR and QSAR in Environmental Research 34:7, pages 591-604.
Read now
Filip Stoliński, Anna Rybińska-Fryca, Maciej Gromelski, Alicja Mikolajczyk & Tomasz Puzyn. (2022) NanoMixHamster: a web-based tool for predicting cytotoxicity of TiO2-based multicomponent nanomaterials toward Chinese hamster ovary (CHO-K1) cells. Nanotoxicology 16:3, pages 276-289.
Read now
Abdallah S. Abdelsattar, Alyaa Dawoud & Mohamed A. Helal. (2021) Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies. Nanotoxicology 15:1, pages 66-95.
Read now
Eleonore Fröhlich. (2018) Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology 46:sup2, pages 1091-1107.
Read now
Agnieszka Gajewicz, Tomasz Puzyn, Katarzyna Odziomek, Piotr Urbaszek, Andrea Haase, Christian Riebeling, Andreas Luch, Muhammad A. Irfan, Robert Landsiedel, Meike van der Zande & Hans Bouwmeester. (2018) Decision tree models to classify nanomaterials according to the DF4nanoGrouping scheme. Nanotoxicology 12:1, pages 1-17.
Read now
Natalja Fjodorova, Marjana Novic, Agnieszka Gajewicz & Bakhtiyor Rasulev. (2017) The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method. Nanotoxicology 11:4, pages 475-483.
Read now
Ceyda Oksel, David A. Winkler, Cai Y. Ma, Terry Wilkins & Xue Z. Wang. (2016) Accurate and interpretable nanoSAR models from genetic programming-based decision tree construction approaches. Nanotoxicology 10:7, pages 1001-1012.
Read now
Denis Fourches, Dongqiuye Pu, Liwen Li, Hongyu Zhou, Qingxin Mu, Gaoxing Su, Bing Yan & Alexander Tropsha. (2016) Computer-aided design of carbon nanotubes with the desired bioactivity and safety profiles. Nanotoxicology 10:3, pages 374-383.
Read now

Articles from other publishers (122)

Manoj K. Shukla, Charles M. Luft, Ashlyn M. Koval, William A. Pisani, Robert W. Lamb, Levi A. Lystrom, Brian D. Etz, Katarina M. Pittman, Michael R. Roth, Caitlin G. Bresnahan, Timothy C. Schutt, Glen R. Jenness & Harley R. McAlexander. 2024. Emerging Materials and Environment. Emerging Materials and Environment 1 78 .
Joyita Roy & Kunal Roy. (2023) Evaluating metal oxide nanoparticle (MeOx NP) toxicity with different types of nano descriptors mainly focusing on simple periodic table-based descriptors: a mini-review. Environmental Science: Nano 10:11, pages 2989-3011.
Crossref
Gurdev preet Singh, K.J. Singh, Kanika Chandel, Parminder Kaur & Jasmeet Kaur. (2023) Green synthesis of NiO doped CuO Nanoparticles: Potential for Environmental Remediation. Inorganic Chemistry Communications 157, pages 111250.
Crossref
G. P. Gakis, I. G. Aviziotis & C. A. Charitidis. (2023) A structure–activity approach towards the toxicity assessment of multicomponent metal oxide nanomaterials. Nanoscale 15:40, pages 16432-16446.
Crossref
Xiliang Yan, Tongtao Yue, David A. Winkler, Yongguang Yin, Hao Zhu, Guibin Jiang & Bing Yan. (2023) Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chemical Reviews 123:13, pages 8575-8637.
Crossref
Fan Zhang, Zhuang Wang, Willie J.G.M. Peijnenburg & Martina G. Vijver. (2023) Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles. Environment International 177, pages 108025.
Crossref
N.D. Kochnev, D.S. Tkachenko, D.O. Kirsanov, N.P. Bobrysheva, M.G. Osmolowsky, M.A. Voznesenskiy & O.M. Osmolovskaya. (2023) Regulation and prediction of defect-related properties in ZnO nanosheets: synthesis, morphological and structural parameters, DFT study and QSPR modelling. Applied Surface Science 621, pages 156828.
Crossref
Babak Sokouti, Vahid Bagheri, Ali Jahanban-Esfahlan & Ahad Mokhtarzadeh. 2023. Nanopharmacology and Nanotoxicology: Clinical Implications and Methods. Nanopharmacology and Nanotoxicology: Clinical Implications and Methods 207 238 .
Nannan Wang, Yunsen Zhang, Wei Wang, Zhuyifan Ye, Hongyu Chen, Guanghui Hu & Defang Ouyang. (2023) How can machine learning and multiscale modeling benefit ocular drug development?. Advanced Drug Delivery Reviews 196, pages 114772.
Crossref
G. P. Gakis, I. G. Aviziotis & C. A. Charitidis. (2023) Metal and metal oxide nanoparticle toxicity: moving towards a more holistic structure–activity approach. Environmental Science: Nano 10:3, pages 761-780.
Crossref
Sijie Zhou, Dejun Yang, Dong Yang, Yan Guo, Ronggui Hu, Yuan Li, Xingjie Zan & Xingxing Zhang. (2022) Injectable, Self‐Healing and Multiple Responsive Histamine Modified Hyaluronic Acid Hydrogels with Potentialities in Drug Delivery, Antibacterial and Tissue Engineering. Macromolecular Rapid Communications 44:3.
Crossref
Ikhazuagbe H. Ifijen, Muniratu Maliki, Ifeanyi J. Odiachi, Inono C. Omoruyi, Aireguamen I. Aigbodion & Esther U. Ikhuoria. (2022) Performance of Metallic-Based Nanomaterials Doped with Strontium in Biomedical and Supercapacitor Electrodes: A Review. Biomedical Materials & Devices.
Crossref
Sabine Hofer, Norbert Hofstätter, Benjamin Punz, Ingrid Hasenkopf, Litty Johnson & Martin Himly. (2022) Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. WIREs Nanomedicine and Nanobiotechnology 14:6.
Crossref
Yaping Liu, Shuang Zhu, Zhanjun Gu, Chunying Chen & Yuliang Zhao. (2022) Toxicity of manufactured nanomaterials. Particuology 69, pages 31-48.
Crossref
Wells Utembe. 2022. Nanotechnology for Environmental Remediation. Nanotechnology for Environmental Remediation 379 400 .
Joyita Roy & Kunal Roy. (2022) Risk assessment and data gap filling of toxicity of metal oxide nanoparticles (Me O x NPs) used in nanomedicines: a mechanistic QSAR approach . Environmental Science: Nano 9:9, pages 3456-3470.
Crossref
Jing Li, Chuanxi Wang, Le Yue, Feiran Chen, Xuesong Cao & Zhenyu Wang. (2022) Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. Ecotoxicology and Environmental Safety 243, pages 113955.
Crossref
Sara Cabanas Coimbra, Inês Sousa-Oliveira, Inês Ferreira-Faria, Diana Peixoto, Miguel Pereira-Silva, Ankita Mathur, Kiran D. Pawar, Faisal Raza, Priscila Gava Mazzola, Filipa Mascarenhas-Melo, Francisco Veiga & Ana Cláudia Paiva-Santos. (2022) Safety Assessment of Nanomaterials in Cosmetics: Focus on Dermal and Hair Dyes Products. Cosmetics 9:4, pages 83.
Crossref
Gregory P. Nichols & Jason Davis. 2022. Toxicology of Nanoparticles and Nanomaterials in Human, Terrestrial and Aquatic Systems. Toxicology of Nanoparticles and Nanomaterials in Human, Terrestrial and Aquatic Systems 383 400 .
Yang Huang, Xuehua Li, Jiayu Cao, Xiaoxuan Wei, Yue Li, Zhe Wang, Xiaoming Cai, Ruibin Li & Jingwen Chen. (2022) Use of dissociation degree in lysosomes to predict metal oxide nanoparticle toxicity in immune cells: Machine learning boosts nano-safety assessment. Environment International 164, pages 107258.
Crossref
Warisa Bunmahotama, Martina G. Vijver & Willie Peijnenburg. (2022) Development of a Quasi–Quantitative Structure–Activity Relationship Model for Prediction of the Immobilization Response of Daphnia magna Exposed to Metal‐Based Nanomaterials . Environmental Toxicology and Chemistry 41:6, pages 1439-1450.
Crossref
Valérie Forest. (2022) Experimental and Computational Nanotoxicology—Complementary Approaches for Nanomaterial Hazard Assessment. Nanomaterials 12:8, pages 1346.
Crossref
M. M. Thwala, A. Afantitis, A. G. Papadiamantis, A. Tsoumanis, G. Melagraki, L. N. Dlamini, C. N. M. Ouma, P. Ramasami, R. Harris, T. Puzyn, N. Sanabria, I. Lynch & M. Gulumian. (2021) Using the Isalos platform to develop a (Q)SAR model that predicts metal oxide toxicity utilizing facet-based electronic, image analysis-based, and periodic table derived properties as descriptors. Structural Chemistry 33:2, pages 527-538.
Crossref
Linda Elberskirch, Adriana Sofranko, Julia Liebing, Norbert Riefler, Kunigunde Binder, Christian Bonatto Minella, Matthias Razum, Lutz Mädler, Klaus Unfried, Roel P. F. Schins, Annette Kraegeloh & Christoph van Thriel. (2022) How Structured Metadata Acquisition Contributes to the Reproducibility of Nanosafety Studies: Evaluation by a Round-Robin Test. Nanomaterials 12:7, pages 1053.
Crossref
Zuowei Ji, Wenjing Guo, Erin L. Wood, Jie Liu, Sugunadevi Sakkiah, Xiaoming Xu, Tucker A. Patterson & Huixiao Hong. (2022) Machine Learning Models for Predicting Cytotoxicity of Nanomaterials. Chemical Research in Toxicology 35:2, pages 125-139.
Crossref
Mainak Chatterjee, Arkaprava Banerjee, Priyanka De, Agnieszka Gajewicz-Skretna & Kunal Roy. (2022) A novel quantitative read-across tool designed purposefully to fill the existing gaps in nanosafety data. Environmental Science: Nano 9:1, pages 189-203.
Crossref
Tung X. Trinh, Myungwon Seo, Tae Hyun Yoon & Jongwoon Kim. (2022) Developing random forest based QSAR models for predicting the mixture toxicity of TiO2 based nano-mixtures to Daphnia magna. NanoImpact 25, pages 100383.
Crossref
Michael K. Danquah & Jaison Jeevanandam. 2022. Emerging Nanomedicines for Diabetes Mellitus Theranostics. Emerging Nanomedicines for Diabetes Mellitus Theranostics 173 198 .
Dimitra-Danai Varsou, Laura-Jayne A. Ellis, Antreas Afantitis, Georgia Melagraki & Iseult Lynch. (2021) Ecotoxicological read-across models for predicting acute toxicity of freshly dispersed versus medium-aged NMs to Daphnia magna. Chemosphere 285, pages 131452.
Crossref
Gaurang Patel, Chayan Patra, S. P. Srinivas, Mamta Kumawat, P. N. Navya & Hemant Kumar Daima. (2021) Methods to evaluate the toxicity of engineered nanomaterials for biomedical applications: a review. Environmental Chemistry Letters 19:6, pages 4253-4274.
Crossref
Calvin A. Omolo, Daniel Hassan, Nikita Devnarain, Yajna Jaglal, Chunderika Mocktar, Rahul S. Kalhapure, Mahantesh Jadhav & Thirumala Govender. (2021) Formulation of pH responsive multilamellar vesicles for targeted delivery of hydrophilic antibiotics. Colloids and Surfaces B: Biointerfaces 207, pages 112043.
Crossref
Ukhyun Jung, Byongcheun Lee, Geunbae Kim, Hyun Kil Shin & Ki-Tae Kim. (2021) Nano-QTTR development for interspecies aquatic toxicity of silver nanoparticles between daphnia and fish. Chemosphere 283, pages 131164.
Crossref
Jacob Kerner, Alan Dogan & Horst von Recum. (2021) Machine learning and big data provide crucial insight for future biomaterials discovery and research. Acta Biomaterialia 130, pages 54-65.
Crossref
Basit Ali Shah, Bin Yuan, Yu Yan, Syed Taj Ud Din & Asma Sardar. (2021) Boost antimicrobial effect of CTAB-capped NixCu1−xO (0.0 ≤ x ≤ 0.05) nanoparticles by reformed optical and dielectric characters. Journal of Materials Science 56:23, pages 13291-13312.
Crossref
Ian Rouse, David Power, Erik G. Brandt, Matthew Schneemilch, Konstantinos Kotsis, Nick Quirke, Alexander P. Lyubartsev & Vladimir Lobaskin. (2021) First principles characterisation of bio–nano interface. Physical Chemistry Chemical Physics 23:24, pages 13473-13482.
Crossref
Ronghua Qi, Yong Pan, Jiakai Cao, Beilei Yuan, Yanjun Wang & Juncheng Jiang. (2021) Toward comprehension of the cytotoxicity of heterogeneous TiO 2 -based engineered nanoparticles: a nano-QSAR approach . Environmental Science: Nano 8:4, pages 927-936.
Crossref
Ricardo Santana, Enrique Onieva, Robin Zuluaga, Aliuska Duardo-Sánchez & Piedad Gañán. (2021) The Role of Machine Learning in Centralized Authorization Process of Nanomedicines in European Union. Current Topics in Medicinal Chemistry 21:9, pages 828-838.
Crossref
Hedwig M. BraakhuisIlse GosensMinne B. Heringa, Agnes G. OomenRob J. VandebrielMonique GroenewoldFlemming R. Cassee. (2021) Mechanism of Action of TiO 2 : Recommendations to Reduce Uncertainties Related to Carcinogenic Potential . Annual Review of Pharmacology and Toxicology 61:1, pages 203-223.
Crossref
Victor E Kuz'min, Liudmila N Ognichenko, Natalia Sizochenko, Valery A. Chapkin, Sergii I. Stelmakh, Angela O. Shyrykalova & Jerzy Leszczynski. 2021. Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials. Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials 317 329 .
Hyun Kil Shin, Soojin Kim & Seokjoo Yoon. (2021) Use of size-dependent electron configuration fingerprint to develop general prediction models for nanomaterials. NanoImpact 21, pages 100298.
Crossref
Suseelendra Desai, Saaketh Desai, John Peter, G. Praveen Kumar & Leo Daniel Amalraj. 2021. Zinc-Based Nanostructures for Environmental and Agricultural Applications. Zinc-Based Nanostructures for Environmental and Agricultural Applications 589 629 .
Supratik Kar & Jerzy Leszczynski. 2021. Health and Environmental Safety of Nanomaterials. Health and Environmental Safety of Nanomaterials 417 441 .
Daniel Hassan, Calvin A. Omolo, Victoria Oluwaseun Fasiku, Ahmed A Elrashedy, Chunderika Mocktar, Bongani Nkambule, Mahmoud E. S. Soliman & Thirumala Govender. (2020) Formulation of pH-Responsive Quatsomes from Quaternary Bicephalic Surfactants and Cholesterol for Enhanced Delivery of Vancomycin against Methicillin Resistant Staphylococcus aureus. Pharmaceutics 12:11, pages 1093.
Crossref
Jossana A. Damasco, Saisree Ravi, Joy D. Perez, Daniel E. Hagaman & Marites P. Melancon. (2020) Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine. Nanomaterials 10:11, pages 2186.
Crossref
Anna Rybińska-Fryca, Alicja Mikolajczyk & Tomasz Puzyn. (2020) Structure–activity prediction networks (SAPNets): a step beyond Nano-QSAR for effective implementation of the safe-by-design concept. Nanoscale 12:40, pages 20669-20676.
Crossref
Ajay Vikram Singh, Mohammad Hasan Dad Ansari, Daniel Rosenkranz, Romi Singh Maharjan, Fabian L. Kriegel, Kaustubh Gandhi, Anurag Kanase, Rishabh Singh, Peter Laux & Andreas Luch. (2020) Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine. Advanced Healthcare Materials 9:17.
Crossref
Ricardo Santana, Robin Zuluaga, Piedad Gañán, Sonia Arrasate, Enrique Onieva, Matthew M. Montemore & Humbert González-Díaz. (2020) PTML Model for Selection of Nanoparticles, Anticancer Drugs, and Vitamins in the Design of Drug–Vitamin Nanoparticle Release Systems for Cancer Cotherapy. Molecular Pharmaceutics 17:7, pages 2612-2627.
Crossref
Jiakai Cao, Yong Pan, Yanting Jiang, Ronghua Qi, Beilei Yuan, Zhenhua Jia, Juncheng Jiang & Qingsheng Wang. (2020) Computer-aided nanotoxicology: risk assessment of metal oxide nanoparticles via nano-QSAR . Green Chemistry 22:11, pages 3512-3521.
Crossref
Yang Huang, Xuehua Li, Shujuan Xu, Huizhen Zheng, Lili Zhang, Jingwen Chen, Huixiao Hong, Rebecca Kusko & Ruibin Li. (2020) Quantitative Structure–Activity Relationship Models for Predicting Inflammatory Potential of Metal Oxide Nanoparticles. Environmental Health Perspectives 128:6.
Crossref
Trevor B. Tilly, M. Tyler Nelson, Karthik B. Chakravarthy, Emily A. Shira, Madeline C. Debrose, Christin M. Grabinski, Richard L. Salisbury, David R. Mattie & Saber M. Hussain. (2019) In Vitro Aerosol Exposure to Nanomaterials: From Laboratory to Environmental Field Toxicity Testing . Chemical Research in Toxicology 33:5, pages 1179-1194.
Crossref
Amit Kumar Halder, André Melo & M. Natália D.S. Cordeiro. (2020) A unified in silico model based on perturbation theory for assessing the genotoxicity of metal oxide nanoparticles. Chemosphere 244, pages 125489.
Crossref
Ekaterina Martynko, Vitaly Solov'ev, Alexandre Varnek, Andrey Legin & Dmitry Kirsanov. (2020) QSPR Modeling of Potentiometric Mg 2+ /Ca 2+ Selectivity for PVC‐plasticized Sensor Membranes . Electroanalysis 32:4, pages 792-798.
Crossref
Daniel Hassan, Calvin A. Omolo, Victoria Oluwaseun Fasiku, Chunderika Mocktar & Thirumala Govender. (2020) Novel chitosan-based pH-responsive lipid-polymer hybrid nanovesicles (OLA-LPHVs) for delivery of vancomycin against methicillin-resistant Staphylococcus aureus infections. International Journal of Biological Macromolecules 147, pages 385-398.
Crossref
Irini Furxhi, Finbarr Murphy, Martin Mullins, Athanasios Arvanitis & Craig A. Poland. (2020) Practices and Trends of Machine Learning Application in Nanotoxicology. Nanomaterials 10:1, pages 116.
Crossref
Bablu Lal Rajak, Rahul Kumar, Manashjit Gogoi & Sanjukta Patra. 2020. Nanoscience in Medicine Vol. 1. Nanoscience in Medicine Vol. 1 147 185 .
Andrey A. Buglak, Anatoly V. Zherdev & Boris B. Dzantiev. (2019) Nano-(Q)SAR for Cytotoxicity Prediction of Engineered Nanomaterials. Molecules 24:24, pages 4537.
Crossref
Natalia Sizochenko, Michael Syzochenko, Natalja Fjodorova, Bakhtiyor Rasulev & Jerzy Leszczynski. (2019) Evaluating genotoxicity of metal oxide nanoparticles: Application of advanced supervised and unsupervised machine learning techniques. Ecotoxicology and Environmental Safety 185, pages 109733.
Crossref
Proma Bhattacharya & Sudarsan Neogi. (2019) Antibacterial properties of doped nanoparticles. Reviews in Chemical Engineering 35:7, pages 861-876.
Crossref
Valérie Forest, Jean-François Hochepied & Jérémie Pourchez. (2019) Importance of Choosing Relevant Biological End Points To Predict Nanoparticle Toxicity with Computational Approaches for Human Health Risk Assessment. Chemical Research in Toxicology 32:7, pages 1320-1326.
Crossref
Kabiruddin Khan, Diego Baderna, Claudia Cappelli, Cosimo Toma, Anna Lombardo, Kunal Roy & Emilio Benfenati. (2019) Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis. Aquatic Toxicology 212, pages 162-174.
Crossref
Mojtaba Falahati, Farnoosh Attar, Majid Sharifi, Thomas Haertlé, Jean-François Berret, Rizwan Hasan Khan & Ali Akbar Saboury. (2019) A health concern regarding the protein corona, aggregation and disaggregation. Biochimica et Biophysica Acta (BBA) - General Subjects 1863:5, pages 971-991.
Crossref
Valérie Forest, Jean-François Hochepied, Lara Leclerc, Adeline Trouvé, Khalil Abdelkebir, Gwendoline Sarry, Vincent Augusto & Jérémie Pourchez. (2019) Towards an alternative to nano-QSAR for nanoparticle toxicity ranking in case of small datasets. Journal of Nanoparticle Research 21:5.
Crossref
Xiliang Yan, Alexander Sedykh, Wenyi Wang, Xiaoli Zhao, Bing Yan & Hao Zhu. (2019) In silico profiling nanoparticles: predictive nanomodeling using universal nanodescriptors and various machine learning approaches . Nanoscale 11:17, pages 8352-8362.
Crossref
Alyssa R. Deline & Jeffrey A. Nason. (2019) Evaluation of labeling methods used for investigating the environmental behavior and toxicity of metal oxide nanoparticles. Environmental Science: Nano 6:4, pages 1043-1066.
Crossref
Helena Fridman, Mahmud Diab, Michael Volokh, Alexander I. Shames, Sofiya Kolusheva & Taleb Mokari. (2018) A Surface Study of Ultrathin Ceria Nanoparticles Decorated with Transition‐Metal Ions. Particle & Particle Systems Characterization 36:3, pages 1800452.
Crossref
Jang-Sik Choi, Tung X. Trinh, Tae-Hyun Yoon, Jongwoon Kim & Hyung-Gi Byun. (2019) Quasi-QSAR for predicting the cell viability of human lung and skin cells exposed to different metal oxide nanomaterials. Chemosphere 217, pages 243-249.
Crossref
Victor E Kuz'min, Liudmila N Ognichenko, Natalia Sizochenko, Valery A. Chapkin, Sergii I. Stelmakh, Angela O. Shyrykalova & Jerzy Leszczynski. (2019) Combining Features of Metal Oxide Nanoparticles. International Journal of Quantitative Structure-Property Relationships 4:1, pages 28-40.
Crossref
G. Basei, D. Hristozov, L. Lamon, A. Zabeo, N. Jeliazkova, G. Tsiliki, A. Marcomini & A. Torsello. (2019) Making use of available and emerging data to predict the hazards of engineered nanomaterials by means of in silico tools: A critical review. NanoImpact 13, pages 76-99.
Crossref
Iman Sengupta, Proma Bhattacharya, Monikangkana Talukdar, Sudarsan Neogi, Surjya K. Pal & Sudipto Chakraborty. (2019) Bactericidal effect of graphene oxide and reduced graphene oxide: Influence of shape of bacteria. Colloid and Interface Science Communications 28, pages 60-68.
Crossref
Wells Utembe, Victor Wepener, Il Je Yu & Mary Gulumian. (2018) An assessment of applicability of existing approaches to predicting the bioaccumulation of conventional substances in nanomaterials. Environmental Toxicology and Chemistry 37:12, pages 2972-2988.
Crossref
Priyanka De, Supratik Kar, Kunal Roy & Jerzy Leszczynski. (2018) Second generation periodic table-based descriptors to encode toxicity of metal oxide nanoparticles to multiple species: QSTR modeling for exploration of toxicity mechanisms. Environmental Science: Nano 5:11, pages 2742-2760.
Crossref
Hossein Mersian, Morteza Alizadeh & Nahal Hadi. (2018) Synthesis of zirconium doped copper oxide (CuO) nanoparticles by the Pechini route and investigation of their structural and antibacterial properties. Ceramics International 44:16, pages 20399-20408.
Crossref
Laura Escorihuela, Benjamí Martorell, Robert Rallo & Alberto Fernández. (2018) Toward computational and experimental characterisation for risk assessment of metal oxide nanoparticles. Environmental Science: Nano 5:10, pages 2241-2251.
Crossref
Maike Käärik, Uko Maran, Mati Arulepp, Anti Perkson & Jaan Leis. (2018) Quantitative Nano-Structure–Property Relationships for the Nanoporous Carbon: Predicting the Performance of Energy Storage Materials. ACS Applied Energy Materials 1:8, pages 4016-4024.
Crossref
Sushma, Hridyesh Kumar, Iqbal Ahmad & Pradip Kumar Dutta. (2018) In-vitro toxicity induced by quartz nanoparticles: Role of ER stress. Toxicology 404-405, pages 1-9.
Crossref
V. Rajendran & B. Deepa. (2018) Studies on the Structural, Morphological, Optical, Electro Chemical and Antimicrobial Activity of Bare, Cu and Ag @ WO3 Nanoplates by Hydrothermal Method. Journal of Inorganic and Organometallic Polymers and Materials 28:4, pages 1574-1586.
Crossref
Dimitra-Danai Varsou, Georgia Tsiliki, Penny Nymark, Pekka Kohonen, Roland Grafström & Haralambos Sarimveis. (2017) toxFlow: A Web-Based Application for Read-Across Toxicity Prediction Using Omics and Physicochemical Data. Journal of Chemical Information and Modeling 58:3, pages 543-549.
Crossref
My Kieu Ha, Tung Xuan Trinh, Jang Sik Choi, Desy Maulina, Hyung Gi Byun & Tae Hyun Yoon. (2018) Toxicity Classification of Oxide Nanomaterials: Effects of Data Gap Filling and PChem Score-based Screening Approaches. Scientific Reports 8:1.
Crossref
Tomasz Puzyn, Nina Jeliazkova, Haralambos Sarimveis, Richard L. Marchese Robinson, Vladimir Lobaskin, Robert Rallo, Andrea-N. Richarz, Agnieszka Gajewicz, Manthos G. Papadopulos, Janna Hastings, Mark T.D. Cronin, Emilio Benfenati & Alberto Fernández. (2018) Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology. Food and Chemical Toxicology 112, pages 478-494.
Crossref
Sreekanth Thota & Debbie C. CransIvan Pacheco & Cristina Buzea. 2018. Metal Nanoparticles. Metal Nanoparticles 203 259 .
Sreekanth Thota & Debbie C. CransIvan Pacheco & Cristina Buzea. 2018. Metal Nanoparticles. Metal Nanoparticles 237 293 .
B Deepa & V Rajendran. (2018) Investigation of organic solvents assisted nano magnesium oxide nanoparticles and their structural, morphological, optical and antimicrobial performance. Materials Research Express 5:1, pages 015033.
Crossref
Natalia Sizochenko, Alicja Mikolajczyk, Karolina Jagiello, Tomasz Puzyn, Jerzy Leszczynski & Bakhtiyor Rasulev. (2018) How the toxicity of nanomaterials towards different species could be simultaneously evaluated: a novel multi-nano-read-across approach. Nanoscale 10:2, pages 582-591.
Crossref
A. Gajewicz. (2018) How to judge whether QSAR/read-across predictions can be trusted: a novel approach for establishing a model's applicability domain. Environmental Science: Nano 5:2, pages 408-421.
Crossref
Wenyi Wang, Alexander Sedykh, Hainan Sun, Linlin Zhao, Daniel P. Russo, Hongyu Zhou, Bing Yan & Hao Zhu. (2017) Predicting Nano–Bio Interactions by Integrating Nanoparticle Libraries and Quantitative Nanostructure Activity Relationship Modeling. ACS Nano 11:12, pages 12641-12649.
Crossref
Merve Doğangün, Mimi N. Hang, Jo Machesky, Alicia C. McGeachy, Naomi Dalchand, Robert J. Hamers & Franz M. Geiger. (2017) Evidence for Considerable Metal Cation Concentrations from Lithium Intercalation Compounds in the Nano–Bio Interface Gap. The Journal of Physical Chemistry C 121:49, pages 27473-27482.
Crossref
Alicja Mikolajczyk, Natalia Sizochenko, Ewa Mulkiewicz, Anna Malankowska, Michal Nischk, Przemyslaw Jurczak, Seishiro Hirano, Grzegorz Nowaczyk, Adriana Zaleska-Medynska, Jerzy Leszczynski, Agnieszka Gajewicz & Tomasz Puzyn. (2017) Evaluating the toxicity of TiO 2 -based nanoparticles to Chinese hamster ovary cells and Escherichia coli: a complementary experimental and computational approach . Beilstein Journal of Nanotechnology 8, pages 2171-2180.
Crossref
Michael González-Durruthy, Adriano V. Werhli, Vinicius Seus, Karina S. Machado, Alejandro Pazos, Cristian R. Munteanu, Humberto González-Díaz & José M. Monserrat. (2017) Decrypting Strong and Weak Single-Walled Carbon Nanotubes Interactions with Mitochondrial Voltage-Dependent Anion Channels Using Molecular Docking and Perturbation Theory. Scientific Reports 7:1.
Crossref
Enrico Burello. (2017) Review of (Q)SAR models for regulatory assessment of nanomaterials risks. NanoImpact 8, pages 48-58.
Crossref
Charalampos Chomenidis, Georgios Drakakis, Georgia Tsiliki, Evangelia Anagnostopoulou, Angelos Valsamis, Philip Doganis, Pantelis Sopasakis & Haralambos Sarimveis. (2017) Jaqpot Quattro: A Novel Computational Web Platform for Modeling and Analysis in Nanoinformatics. Journal of Chemical Information and Modeling 57:9, pages 2161-2172.
Crossref
Guangchao Chen, Martina Vijver, Yinlong Xiao & Willie Peijnenburg. (2017) A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials. Materials 10:9, pages 1013.
Crossref
D. W. Boukhvalov & T. H. Yoon. (2017) Development of Theoretical Descriptors for Cytotoxicity Evaluation of Metallic Nanoparticles. Chemical Research in Toxicology 30:8, pages 1549-1555.
Crossref
John-Jairo Aguilera-Correa, Ana Conde, Maria-Angeles Arenas, Juan-Jose de-Damborenea, Miguel Marin, Antonio L Doadrio & Jaime Esteban. (2017) Bactericidal activity of the Ti–13Nb–13Zr alloy against different species of bacteria related with implant infection. Biomedical Materials 12:4, pages 045022.
Crossref
Eva Kovačec, Marjana Regvar, Johannes Teun van Elteren, Iztok Arčon, Tamás Papp, Darko Makovec & Katarina Vogel-Mikuš. (2017) Biotransformation of copper oxide nanoparticles by the pathogenic fungus Botrytis cinerea. Chemosphere 180, pages 178-185.
Crossref
Guangchao Chen, Willie Peijnenburg, Yinlong Xiao & Martina Vijver. (2017) Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials. International Journal of Molecular Sciences 18:7, pages 1504.
Crossref
Michael González-Durruthy, Luciane C. Alberici, Carlos Curti, Zeki Naal, David T. Atique-Sawazaki, José M. Vázquez-Naya, Humberto González-Díaz & Cristian R. Munteanu. (2017) Experimental–Computational Study of Carbon Nanotube Effects on Mitochondrial Respiration: In Silico Nano-QSPR Machine Learning Models Based on New Raman Spectra Transform with Markov–Shannon Entropy Invariants. Journal of Chemical Information and Modeling 57:5, pages 1029-1044.
Crossref
Giulio Caracciolo, Omid C. Farokhzad & Morteza Mahmoudi. (2017) Biological Identity of Nanoparticles In Vivo : Clinical Implications of the Protein Corona. Trends in Biotechnology 35:3, pages 257-264.
Crossref
Natalia Sizochenko & Jerzy Leszczynski. 2017. Materials Science and Engineering. Materials Science and Engineering 1704 1721 .
Agnieszka Gajewicz. (2017) What if the number of nanotoxicity data is too small for developing predictive Nano-QSAR models? An alternative read-across based approach for filling data gaps. Nanoscale 9:24, pages 8435-8448.
Crossref
Sijie Lin, Monika Mortimer, Ran Chen, Aleksandr Kakinen, Jim E. Riviere, Thomas P. Davis, Feng Ding & Pu Chun Ke. (2017) NanoEHS beyond toxicity – focusing on biocorona. Environmental Science: Nano 4:7, pages 1433-1454.
Crossref
A. Gajewicz, K. Jagiello, M. T. D. Cronin, J. Leszczynski & T. Puzyn. (2017) Addressing a bottle neck for regulation of nanomaterials: quantitative read-across (Nano-QRA) algorithm for cases when only limited data is available. Environmental Science: Nano 4:2, pages 346-358.
Crossref
Cristina Buzea & Ivan Pacheco. 2017. EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials. EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials 3 45 .
Iseult Lynch, Antreas Afantitis, Georgios Leonis, Georgia Melagraki & Eugenia Valsami-Jones. 2017. Advances in QSAR Modeling. Advances in QSAR Modeling 385 424 .
Antonio CassanoRichard L. Marchese RobinsonAnna Palczewska, Tomasz Puzyn, Agnieszka Gajewicz, Lang Tran, Serena Manganelli & Mark T.D. Cronin. (2016) Comparing the CORAL and Random Forest Approaches for Modelling the In Vitro Cytotoxicity of Silica Nanomaterials . Alternatives to Laboratory Animals 44:6, pages 533-556.
Crossref
Ewelina Wyrzykowska, Alicja Mikolajczyk, Celina Sikorska & Tomasz Puzyn. (2016) Development of a novel in silico model of zeta potential for metal oxide nanoparticles: a nano-QSPR approach . Nanotechnology 27:44, pages 445702.
Crossref
Daniela M. Ushizima, Hrishikesh A. Bale, E. Wes Bethel, Peter Ercius, Brett A. Helms, Harinarayan Krishnan, Lea T. Grinberg, Maciej Haranczyk, Alastair A. Macdowell, Katarzyna Odziomek, Dilworth Y. Parkinson, Talita Perciano, Robert O. Ritchie & Chao Yang. (2016) IDEAL: Images Across Domains, Experiments, Algorithms and Learning. JOM 68:11, pages 2963-2972.
Crossref
David A. Winkler. (2016) Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials. Toxicology and Applied Pharmacology 299, pages 96-100.
Crossref
Supratik Kar, Agnieszka Gajewicz, Kunal Roy, Jerzy Leszczynski & Tomasz Puzyn. (2016) Extrapolating between toxicity endpoints of metal oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR. Ecotoxicology and Environmental Safety 126, pages 238-244.
Crossref
Guangchao Chen, Willie J. G. M. Peijnenburg, Vasyl Kovalishyn & Martina G. Vijver. (2016) Development of nanostructure–activity relationships assisting the nanomaterial hazard categorization for risk assessment and regulatory decision-making. RSC Advances 6:57, pages 52227-52235.
Crossref
Alicja Mikolajczyk, Anna Malankowska, Grzegorz Nowaczyk, Agnieszka Gajewicz, Seishiro Hirano, Stefan Jurga, Adriana Zaleska-Medynska & Tomasz Puzyn. (2016) Combined experimental and computational approach to developing efficient photocatalysts based on Au/Pd–TiO 2 nanoparticles . Environmental Science: Nano 3:6, pages 1425-1435.
Crossref
Richard L. Marchese Robinson, Iseult Lynch, Willie Peijnenburg, John Rumble, Fred Klaessig, Clarissa Marquardt, Hubert Rauscher, Tomasz Puzyn, Ronit Purian, Christoffer Åberg, Sandra Karcher, Hanne Vriens, Peter Hoet, Mark D. Hoover, Christine Ogilvie Hendren & Stacey L. Harper. (2016) How should the completeness and quality of curated nanomaterial data be evaluated?. Nanoscale 8:19, pages 9919-9943.
Crossref
Alla P. Toropova, Andrey A. Toropov, Serena Manganelli, Caterina Leone, Diego Baderna, Emilio Benfenati & Roberto Fanelli. (2016) Quasi-SMILES as a tool to utilize eclectic data for predicting the behavior of nanomaterials. NanoImpact 1, pages 60-64.
Crossref
Iseult Lynch & Robert Gregory Lee. 2016. Managing Risk in Nanotechnology. Managing Risk in Nanotechnology 145 169 .
Georgia Tsiliki, Cristian R. Munteanu, Jose A. Seoane, Carlos Fernandez-Lozano, Haralambos Sarimveis & Egon L. Willighagen. (2015) RRegrs: an R package for computer-aided model selection with multiple regression models. Journal of Cheminformatics 7:1.
Crossref
Jiali Ying, Ting Zhang & Meng Tang. (2015) Metal Oxide Nanomaterial QNAR Models: Available Structural Descriptors and Understanding of Toxicity Mechanisms. Nanomaterials 5:4, pages 1620-1637.
Crossref
Nina Jeliazkova, Charalampos Chomenidis, Philip Doganis, Bengt Fadeel, Roland Grafström, Barry Hardy, Janna Hastings, Markus Hegi, Vedrin Jeliazkov, Nikolay Kochev, Pekka Kohonen, Cristian R Munteanu, Haralambos Sarimveis, Bart Smeets, Pantelis Sopasakis, Georgia Tsiliki, David Vorgrimmler & Egon Willighagen. (2015) The eNanoMapper database for nanomaterial safety information. Beilstein Journal of Nanotechnology 6, pages 1609-1634.
Crossref
Alicja Mikolajczyk, Agnieszka Gajewicz, Bakhtiyor Rasulev, Nicole Schaeublin, Elisabeth Maurer-Gardner, Saber Hussain, Jerzy Leszczynski & Tomasz Puzyn. (2015) Zeta Potential for Metal Oxide Nanoparticles: A Predictive Model Developed by a Nano-Quantitative Structure–Property Relationship Approach. Chemistry of Materials 27:7, pages 2400-2407.
Crossref
Agnieszka Gajewicz, Mark T.D Cronin, Bakhtiyor Rasulev, Jerzy Leszczynski & Tomasz Puzyn. (2015) Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across. Nanotechnology 26:1, pages 015701.
Crossref
Natalia Sizochenko, Bakhtiyor Rasulev, Agnieszka Gajewicz, Elena Mokshyna, Victor E. Kuz'min, Jerzy Leszczynski & Tomasz Puzyn. (2015) Causal inference methods to assist in mechanistic interpretation of classification nano-SAR models. RSC Advances 5:95, pages 77739-77745.
Crossref
Xiaojia He, Winfred G. Aker, Peter P. Fu & Huey-Min Hwang. (2015) Toxicity of engineered metal oxide nanomaterials mediated by nano–bio–eco–interactions: a review and perspective. Environmental Science: Nano 2:6, pages 564-582.
Crossref
Natalia Sizochenko, Bakhtiyor Rasulev, Agnieszka Gajewicz, Victor Kuz'min, Tomasz Puzyn & Jerzy Leszczynski. (2014) From basic physics to mechanisms of toxicity: the “liquid drop” approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Nanoscale 6:22, pages 13986-13993.
Crossref
Jacob Kerner, Alan Dogan & Horst von Recum. (2020) Machine Learning and Big Data Provide Crucial Insight for Future Biomaterials Discovery and Research. SSRN Electronic Journal.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.