140
Views
24
CrossRef citations to date
0
Altmetric
Review

Point mutations of protein kinases and individualised cancer therapy

, &
Pages 2243-2261 | Published online: 24 Oct 2006
 

Abstract

The treatment of cancer is rapidly changing, with an increasing focus on converting our improved understanding of the molecular basis of disease into clinical benefit for patients. Protein kinases that are mutated in cancer represent attractive targets, as they may result in cellular dependency on the mutant kinase or its associated pathway for survival, a condition known as ‘oncogene addiction’. Early clinical experiences have demonstrated dramatic clinical benefit of targeting oncogenic mutations in diseases that have been largely resistant to traditional cytotoxic chemotherapy. Further, mutational activation of kinases can indicate which patients are likely to respond to targeted therapeutics. However, these experiences have also illuminated a number of critical challenges that will have to be addressed in the development of effective drugs across different cancers, to fully realise the potential of individualised molecular therapy. This review utilises examples of genetic activation of kinases to illustrate many of the lessons learned, as well as those yet to be implemented.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 884.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.