140
Views
24
CrossRef citations to date
0
Altmetric
Review

Point mutations of protein kinases and individualised cancer therapy

, &
Pages 2243-2261 | Published online: 24 Oct 2006

Bibliography

  • COLVIN OM, FRIEDMAN HS: Alkylating agents. In Cancer: Principles and Practice of Oncology. DeVita VT, Hellman S, Rosenberg SA. (Ed.). Lippincott, Williams and Wilkins, New York, US (2005):332-344.
  • FARBER S, DIAMOND LK, MERCER RD, AL E: Temporary remissions in acute leukemias in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N. Engl. J. Med. (1948) 238:787-793.
  • ROUS P: Sarcoma of the fowl transmissible by an agent separable from the tumor cells. J.Exp. Med. (1911) 13:397-411.
  • HOWLEY PM, GANEM D, KIEFF E: DNA viruses. In: Cancer: Principles and Practice of Oncology. DeVita VT, Hellman S, Rosenberg SA (Ed.). Lippincott, Williams, and Wilkins, New York, US (2005):173-184.
  • HUEBNER RJ, TODARO GJ: Oncogenes of RNA tumor viruses as determinants of cancer. Proc. Natl. Acad. Sci. USA (1969) 64(3):1087-1094.
  • BRUGGE JS, ERIKSON RL: Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature (1977) 269(5626):346-348.
  • MARTIN GS: The road to Src. Oncogene (2004) 23:7910-7917.
  • SHALLOWAY D, ZELENETZ AD, COOPER GM: Molecular cloning and characterization of the chicken gene homologous to the transforming gene of Rous sarcoma virus. Cell (1981) 24(2):531-541.
  • SJOBLOM T, JONES S, WOOD LD et al.: The consensus coding sequences of human breast and colorectal cancers. Science (2006):1133427.
  • LEVINSON AD, OPPERMANN H, LEVINTOW L, VARMUS HE, BISHOP JM: Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell (1978) 15(2):561-572.
  • KHARAS MG, FRUMAN DA: Abl oncogenes and phosphoinositide 3-kinase: mechanism of activation and downstream effectors. Cancer Res. (2005) 65(6):2047-2053.
  • STEELMAN LS, POHNERT SC, SHELTON JG et al.: Jak/STAT, Raf/MEK/ERK, PI3K/Akt and Bcr-Abl in cell cycle progression and leukemogenesis. Leukemia (2004) 18(2):189-218.
  • ZOU X, CALAME K: Signaling pathways activated by oncogenic forms of Abl tyrosine kinase. J. Biol. Chem. (1999) 274(26):18141-18144.
  • HENNESSY BT, SMITH DL, RAM PT, LU Y, MILLS GB: Exploiting the PI3K/Akt pathway for cancer drug discovery. Nat. Rev. Drug Discov. (2005) 4(12):988-1004.
  • DRUKER BJ, TAMURA S, BUCHDUNGER E et al.: Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. (1996) 2(5):561-566.
  • DRUKER BJ, TALPAZ M, RESTA DJ et al.: Efficacy and safety of a specific inhibitor of the Bcr-Abl tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. (2001) 344(14):1031-1037.
  • O'BRIEN SG, GUILHOT F, LARSON RA et al.: Imatinib compared with IFN and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. (2003) 348(11):994-1004.
  • GORRE ME, MOHAMMED M, ELLWOOD K et al.: Clinical resistance to STI-571 cancer therapy caused by Bcr-Abl gene mutation or amplification. Science (2001) 293(5531):876-880.
  • SHAH NP, NICOLL JM, NAGAR B et al.: Multiple Bcr-Abl kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic-phase and blast crisis chronic myeloid leukemia. Cancer Cell (2002) 2(2):117-125.
  • O'HARE T, WALTERS DK, STOFFREGEN EP et al.: In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. (2005) 65(11):4500-4505.
  • SCHEINFELD N: A comprehensive review of imatinib mesylate (Gleevec) for dermatological diseases. J. Drugs Dermatol. (2006) 5(2):117-122.
  • DEMETRI GD, VON MEHREN M, BLANKE CD et al.: Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. (2002) 347(7):472-480.
  • COOLS J, DEANGELO DJ, GOTLIB J et al.: A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med. (2003) 348(13):1201-1214.
  • DE MESTIER P, DES GUETZ G: Treatment of gastrointestinal stromal tumors with imatinib mesylate: a major breakthrough in the understanding of tumor-specific molecular characteristics. World J. Surg. (2005) 29(3):357-361; discussion 362.
  • SLAMON DJ, GODOLPHIN W, JONES LA et al.: Studies of the HER2/Neu proto-oncogene in human breast and ovarian cancer. Science (1989) 244(4905):707-712.
  • PRESS M, BERNSTEIN L, THOMAS P et al.: HER2/Neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J. Clin. Oncol. (1997) 15(8):2894-2904.
  • BRAND FX, RAVANEL N, GAUCHEZ AS et al.: Prospect for anti-HER2 receptor therapy in breast cancer. Anticancer Res. (2006) 26(1B):715-722.
  • BASELGA J, NORTON L, ALBANELL J, KIM YM, MENDELSOHN J: Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/Neu overexpressing human breast cancer xenografts. Cancer Res. (1998) 58(13):2825-2831.
  • SLAMON DJ, LEYLAND-JONES B, SHAK S et al.: Use of chemotherapy plus a mAb against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. (2001) 344(11):783-792.
  • MASS RD, PRESS MF, ANDERSON S et al.: Evaluation of clinical outcomes according to HER2 detection by fluorescence in situ hybridization in women with metastatic breast cancer treated with trastuzumab. Clin. Breast Cancer (2005) 6(3):240-246.
  • ROMOND EH, PEREZ EA, BRYANT J et al.: Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. (2005) 353(16):1673-1684.
  • PICCART-GEBHART MJ, PROCTER M, LEYLAND-JONES B et al.: Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. (2005) 353(16):1659-1672.
  • VAN DER ZWAN SM, DEMATTEO RP: Gastrointestinal stromal tumor: 5 years later. Cancer (2005) 104(9):1781-1788.
  • DEMATTEO RP, LEWIS JJ, LEUNG D et al.: Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann. Surg. (2000) 231(1):51-58.
  • NG EH, POLLOCK RE, MUNSELL MF, ATKINSON EN, ROMSDAHL MM: Prognostic factors influencing survival in gastrointestinal leiomyosarcomas. Implications for surgical management and staging. Ann. Surg. (1992) 215(1):68-77.
  • HIROTA S, ISOZAKI K: Pathology of gastrointestinal stromal tumors. Pathol. Int. (2006) 56(1):1-9.
  • FLETCHER CD, BERMAN JJ, CORLESS C et al.: Diagnosis of gastrointestinal stromal tumors: a consensus approach. Int. J. Surg. Pathol. (2002) 10(2):81-89.
  • LONGLEY BJ, TYRRELL L, LU S-Z et al.: Somatic c-Kit activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat. Genet. (1996) 12(3):312-314.
  • HIROTA S, ISOZAKI K, MORIYAMA Y et al.: Gain-of-function mutations of c-Kit in human gastrointestinal stromal tumors. Science (1998) 279(5350):577-580.
  • SOMMER G, AGOSTI V, EHLERS I et al.: Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. Proc. Natl. Acad. Sci. USA (2003) 100(11):6706-6711.
  • RUBIN BP, SINGER S, TSAO C et al.: Kit activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res. (2001) 61(22):8118-8121.
  • HEINRICH MC, CORLESS CL, DUENSING A et al.: PDGFRA activating mutations in gastrointestinal stromal tumors. Science (2003) 299(5607):708-710.
  • HIROTA S, OHASHI A, NISHIDA T et al.: Gain-of-function mutations of platelet-derived growth factor receptor-α gene in gastrointestinal stromal tumors. Gastroenterology (2003) 125(3):660-667.
  • SAVAGE DG, ANTMAN KH: Imatinib mesylate – a new oral targeted therapy. N. Engl. J. Med. (2002) 346(9):683-693.
  • TUVESON DA, WILLIS NA, JACKS T et al.: STI571 inactivation of the gastrointestinal stromal tumor c-Kit oncoprotein: biological and clinical implications. Oncogene (2001) 20(36):5054-5058.
  • JOENSUU H, ROBERTS PJ, SARLOMO-RIKALA M et al.: Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N. Engl. J. Med. (2001) 344(14):1052-1056.
  • HEINRICH MC, CORLESS CL, DEMETRI GD et al.: Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. (2003) 21(23):4342-4349.
  • WARDELMANN E, THOMAS N, MERKELBACH-BRUSE S et al.: Acquired resistance to imatinib in gastrointestinal stromal tumours caused by multiple Kit mutations. Lancet Oncol (2005) 6(4):249-251.
  • TAMBORINI E, GABANTI E, LAGONIGRO MS et al.: Kit/Val654 Ala receptor detected in one imatinib-resistant GIST patient. Cancer Res. (2005) 65(3):1115; author reply 1115.
  • YAMAGUCHI M, MATSUMOTO T, TATE G, HIGUCHI T: Secondary resistance to imatinib mesylate in a patient with unresectable duodenal GIST without mutations in exons 9, 11, 13, or 17 of the c-Kit protooncogene. J. Gastroenterol. (2004) 39(9):904-905.
  • CHEN LL, TRENT JC, WU EF et al.: A missense mutation in Kit kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res. (2004) 64(17):5913-5919.
  • TAMBORINI E, BONADIMAN L, GRECO A et al.: A new mutation in the Kit ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient. Gastroenterology (2004) 127(1):294-299.
  • ANTONESCU CR, BESMER P, GUO T et al.: Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin. Cancer Res. (2005) 11(11):4182-4190.
  • PRENEN H, COOLS J, MENTENS N et al.: Efficacy of the kinase inhibitor SU11248 against gastrointestinal stromal tumor mutants refractory to imatinib mesylate. Clin. Cancer Res. (2006) 12(8):2622-2627.
  • DEBIEC-RYCHTER M, COOLS J, DUMEZ H et al.: Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology (2005) 128(2):270-279.
  • PARKIN DM, BRAY F, FERLAY J, PISANI P: Global cancer statistics, 2002. CA Cancer J. Clin. (2005) 55(2):74-108.
  • KRIS MG, NATALE RB, HERBST RS et al.: Efficacy of gefitinib, an inhibitor of the EGFR tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. Jama (2003) 290(16):2149-2158.
  • FUKUOKA M, YANO S, GIACCONE G et al.: Multi-institutional randomized Phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J. Clin. Oncol. (2003) 21(12):2237-2246.
  • SHEPHERD FA, RODRIGUES PEREIRA J, CIULEANU T et al.: Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. (2005) 353(2):123-132.
  • HERBST RS, PRAGER D, HERMANN R et al.: Tribute: a Phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J. Clin. Oncol. (2005) 23(25):5892-5899.
  • HERBST RS, GIACCONE G, SCHILLER JH et al.: Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a Phase III trialb – INTACT 2. J. Clin. Oncol. (2004) 22(5):785-794.
  • PAEZ JG, JANNE PA, LEE JC et al.: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science (2004) 304(5676):1497-1500.
  • LYNCH TJ, BELL DW, SORDELLA R et al.: Activating mutations in the EGFR underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. (2004) 350(21):2129-2139.
  • PAO W, MILLER V, ZAKOWSKI M et al.: EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA (2004) 101(36):13306-13311.
  • HUANG SF, LIU HP, LI LH et al.: High frequency of EGFR mutations with complex patterns in non-small cell lung cancers related to gefitinib responsiveness in Taiwan. Clin. Cancer Res. (2004) 10(24):8195-8203.
  • KIM KS, JEONG JY, KIM YC et al.: Predictors of the response to gefitinib in refractory non-small cell lung cancer. Clin. Cancer Res. (2005) 11(6):2244-2251.
  • TOKUMO M, TOYOOKA S, KIURA K et al.: The relationship between EGFR mutations and clinicopathologic features in non-small cell lung cancers. Clin. Cancer Res. (2005) 11(3):1167-1173.
  • JI H, LI D, CHEN L et al.: The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell (2006) 9(6):485-495.
  • POLITI K, ZAKOWSKI MF, FAN P-D et al.: Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev. (2006) 20(11):1496-1510.
  • SORDELLA R, BELL DW, HABER DA, SETTLEMAN J: Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science (2004) 305(5687):1163-1167.
  • TRACY S, MUKOHARA T, HANSEN M et al.: Gefitinib induces apoptosis in the EGFRL858R non-small-cell lung cancer cell line H3255. Cancer Res. (2004) 64(20):7241-7244.
  • WEINSTEIN IB: Cancer: enhanced: addiction to oncogenes – the achilles heal of cancer. Science (2002) 297(5578):63-64.
  • TSAO M-S, SAKURADA A, CUTZ J-C et al.: Erlotinib in lung cancer – molecular and clinical predictors of outcome. N. Engl. J. Med. (2005) 353(2):133-144.
  • EBERHARD DA, JOHNSON BE, AMLER LC et al.: Mutations in the EGFR and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. (2005) 23(25):5900-5909.
  • KOBAYASHI S, BOGGON TJ, DAYARAM T et al.: EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. (2005) 352(8):786-792.
  • PAO W, MILLER VA, POLITI KA et al.: Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med (2005) 2(3):e73.
  • CAPPUZZO F, HIRSCH FR, ROSSI E et al.: EGFR gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J. Natl Cancer Inst. (2005) 97(9):643-655.
  • AMANN J, KALYANKRISHNA S, MASSION PP et al.: Aberrant EGFR signaling and enhanced sensitivity to EGFR inhibitors in lung cancer. Cancer Res. (2005) 65(1):226-235.
  • STEPHENS P, HUNTER C, BIGNELL G et al.: Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature (2004) 431(7008):525-526.
  • SHIGEMATSU H, TAKAHASHI T, NOMURA M et al.: Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res. (2005) 65(5):1642-1646.
  • COHEN EE, LINGEN MW, MARTIN LE et al.: Response of some head and neck cancers to EGFR tyrosine kinase inhibitors may be linked to mutation of ERBB2 rather than EGFR. Clin. Cancer Res. (2005) 11(22):8105-8108.
  • HIRATA A, HOSOI F, MIYAGAWA M et al.: HER2 overexpression increases sensitivity to gefitinib, an EGFR tyrosine kinase inhibitor, through inhibition of HER2/HER3 heterodimer formation in lung cancer cells. Cancer Res. (2005) 65(10):4253-4260.
  • GIEHL K: Oncogenic Ras in tumour progression and metastasis. Biol. Chem. (2005) 386(3):193-205.
  • COLICELLI J: Human Ras superfamily proteins and related GTPases. Sci. STKE (2004) 2004(250):RE13.
  • GRADY WM, MARKOWITZ SD: Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum. Genet. (2002) 3:101-128.
  • GOEL VK, LAZAR AJ, WARNEKE CL, REDSTON MS, HALUSKA FG: Examination of mutations in b-Raf, n-Ras and PTEN in primary cutaneous melanoma. J. Invest. Dermatol. (2006) 126(1):154-160.
  • GOYDOS JS, MANN B, KIM HJ et al.: Detection of b-Raf and N-Ras mutations in human melanoma. J. Am. Coll. Surg. (2005) 200(3):362-370.
  • SMALLEY KS: A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? Int. J. Cancer (2003) 104(5):527-532.
  • DAVIES H, BIGNELL GR, COX C et al.: Mutations of the b-Raf gene in human cancer. Nature (2002) 417(6892):949-954.
  • OMHOLT K, PLATZ A, KANTER L, RINGBORG U, HANSSON J: n-Ras and b-Raf mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin. Cancer Res. (2003) 9(17):6483-6488.
  • GORDEN A, OSMAN I, GAI W et al.: Analysis of b-Raf and n-Ras mutations in metastatic melanoma tissues. Cancer Res. (2003) 63(14):3955-3957.
  • CURTIN JA, FRIDLYAND J, KAGESHITA T et al.: Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. (2005) 353(20):2135-2147.
  • WONG CW, FAN YS, CHAN TL et al.: b-Raf and n-Ras mutations are uncommon in melanomas arising in diverse internal organs. J. Clin. Pathol. (2005) 58(6):640-644.
  • ZUIDERVAART W, VAN NIEUWPOORT F, STARK M et al.: Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of b-Raf or Ras. Br. J. Cancer (2005) 92(11):2032-2038.
  • RIMOLDI D, SALVI S, LIENARD D et al.: Lack of b-Raf mutations in uveal melanoma. Cancer Res. (2003) 63(18):5712-5715.
  • PATTON EE, WIDLUND HR, KUTOK JL et al.: b-Raf mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr. Biol. (2005) 15(3):249-254.
  • POLLOCK PM, HARPER UL, HANSEN KS et al.: High frequency of b-Raf mutations in nevi. Nat. Genet. (2003) 33(1):19-20.
  • YAZDI AS, PALMEDO G, FLAIG MJ et al.: Mutations of the BRAF gene in benign and malignant melanocytic lesions. J. Invest. Dermatol. (2003) 121(5):1160-1162.
  • TSAO H, GOEL V, WU H, YANG G, HALUSKA FG: Genetic interaction between n-Ras and b-Raf mutations and PTEN/MMAC1 inactivation in melanoma. J. Invest. Dermatol. (2004) 122(2):337-341.
  • HINGORANI SR, JACOBETZ MA, ROBERTSON GP, HERLYN M, TUVESON DA: Suppression of b-Raf (V599E) in human melanoma abrogates transformation. Cancer Res. (2003) 63(17):5198-5202.
  • STRUMBERG D: Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. Drugs Today (Barc) (2005) 41(12):773-784.
  • AHMAD T, EISEN T: Kinase inhibition with BAY 43-9006 in renal cell carcinoma. Clin. Cancer Res. (2004) 10(18 Pt 2):6388S-6392S.
  • AHMAD T, MARAIS R, PYLE L et al.: BAY 43-9006 in patients with advanced melanoma: The Royal Marsden experience. 2004 ASCO Annual Meeting. New Orleans, LA, US (2004).
  • ESCUDIER B, SZCZYLIK C, EISEN T et al.: Randomized Phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43-9006) in patients with advanced renal cell carcinoma (RCC). ASCO Annual Meeting. Orlando, FL, US (2005).
  • YANG JC, HAWORTH L, SHERRY RM et al.: A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. (2003) 349(5):427-434.
  • FLAHERTY KT, BROSE M, SCHUCHTER L et al.: Phase I/II trial of BAY 43-9006, carboplatin (C) and paclitaxel (P) demonstrates preliminary antitumor activity in the expansion cohort of patients with metastatic melanoma. ASCO Annual Meeting. New Orleans, LA, US (2004).
  • BACHMAN KE, ARGANI P, SAMUELS Y et al.: The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol. Ther. (2004) 3(8):772-775.
  • KANG S, BADER AG, VOGT PK: Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc. Natl. Acad. Sci. USA (2005) 102(3):802-807.
  • SAMUELS Y, WANG Z, BARDELLI A et al.: High frequency of mutations of the PIK3CA gene in human cancers. Science (2004) 304(5670):554.
  • BADER AG, KANG S, VOGT PK: Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc. Natl. Acad. Sci. USA (2006) 103(5):1475-1479.
  • LI SY, RONG M, GRIEU F, IACOPETTA B: PIK3CA mutations in breast cancer are associated with poor outcome. Breast Cancer Res. Treat. (2006) 96(1):91-95.
  • CAMPBELL IG, RUSSELL SE, CHOONG DY et al.: Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. (2004) 64(21):7678-7681.
  • YEN-YING MA S-JW, YU-CHEN LIN, JIA-CHYI LUNG et al.: PIK3CA as an oncogene in cervical cancer. Oncogene (2000) 19(23):2739-2744.
  • WOENCKHAUS J, STEGER K, WERNER E et al.: Genomic gain of PIK3CA and increased expression of p110α are associated with progression of dysplasia into invasive squamous cell carcinoma. J. Pathol. (2002) 198(3):335-342.
  • SHAYESTEH L, LU Y, KUO WL et al.: PIK3CA is implicated as an oncogene in ovarian cancer. Nat. Genet. (1999) 21(1):99-102.
  • MIZOGUCHI M, NUTT CL, MOHAPATRA G, LOUIS DN: Genetic alterations of phosphoinositide 3-kinase subunit genes in human glioblastomas. Brain Pathol. (2004) 14(4):372-377.
  • BRODERICK DK, DI C, PARRETT TJ et al.: Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res. (2004) 64(15):5048-5050.
  • JUCKER M, SUDEL K, HORN S et al.: Expression of a mutated form of the p85α regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphoma-derived cell line (CO). Leukemia (2002) 16(5):894-901.
  • CRUL M, ROSING H, DE KLERK GJ et al.: Phase I and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur. J. Cancer (2002) 38(12):1615-1621.
  • VANHAESEBROECK B, ALI K, BILANCIO A, GEERING B, FOUKAS LC: Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem. Sci. (2005) 30(4):194-204.
  • WARD SG, FINAN P: Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agents. Curr. Opin. Pharmacol. (2003) 3(4):426-434.
  • IRIE HY, PEARLINE RV, GRUENEBERG D et al.: Distinct roles of Akt-1 and Akt-2 in regulating cell migration and epithelial-mesenchymal transition. J. Cell Biol. (2005) 171(6):1023-1034.
  • YOELI-LERNER M, YIU GK, RABINOVITZ I et al.: Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell (2005) 20(4):539-550.
  • HUTCHINSON JN, JIN J, CARDIFF RD, WOODGETT JR, MULLER WJ: Activation of Akt-1 (PKB-{α}) can accelerate ErbB-2-mediated mammary tumorigenesis but suppresses tumor invasion. Cancer Res. (2004) 64(9):3171-3178.
  • LAW BK: Rapamycin: an anti-cancer immunosuppressant? Crit. Rev. Oncol. Hematol. (2005) 56(1):47-60.
  • GEORGAKIS GV, YOUNES A: From Rapa Nui to rapamycin: targeting PI3K/Akt/mTOR for cancer therapy. Expert Rev. Anticancer Ther. (2006) 6(1):131-140.
  • O'REILLY KE, ROJO F, SHE QB et al.: mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. (2006) 66(3):1500-1508.
  • WITZIG TE, GEYER SM, GHOBRIAL I et al.: Phase II Trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J. Clin. Oncol. (2005) 23(23):5347-5356.
  • MROZEK K, HEEREMA NA, BLOOMFIELD CD: Cytogenetics in acute leukemia. Blood Rev. (2004) 18(2):115-136.
  • BENNETT JM, CATOVSKY D, DANIEL MT, AL E: Proposals for the classification of the acute leukaemias: French–American–British Cooperative Group. Br. J. Haematol. (1976) 33:451-458.
  • WHEATLEY K, BURNETT AK, GOLDSTONE AH et al.: A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. UK Medical Research Council's Adult and Childhood Leukaemia Working Parties. Br. J. Haematol. (1999) 107(1):69-79.
  • REILLY JT: Flt-3 and its role in the pathogenesis of acute myeloid leukaemia. Leuk. Lymphoma (2003) 44(1):1-7.
  • DREXLER HG: Expression of Flt-3 receptor and response to Flt-3 ligand by leukemic cells. Leukemia (1996) 10(4):588-599.
  • CAROW CE, LEVENSTEIN M, KAUFMANN SH et al.: Expression of the hematopoietic growth factor receptor Flt-3 (STK-1/Flk2) in human leukemias. Blood (1996) 87(3):1089-1096.
  • HAWLEY TS, FONG AZ, GRIESSER H, LYMAN SD, HAWLEY RG: Leukemic predisposition of mice transplanted with gene-modified hematopoietic precursors expressing Flt-3 ligand. Blood (1998) 92(6):2003-2011.
  • NAKAO M, YOKOTA S, IWAI T et al.: Internal tandem duplication of the Flt-3 gene found in acute myeloid leukemia. Leukemia (1996) 10(12):1911-1918.
  • THIEDE C, STEUDEL C, MOHR B et al.: Analysis of Flt-3-activating mutations in 979 patients with acute myelogenous leukemia: association with Fab subtypes and identification of subgroups with poor prognosis. Blood (2002) 99(12):4326-4335.
  • XU F, TAKI T, YANG HW et al.: Tandem duplication of the Flt-3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br. J. Haematol. (1999) 105(1):155-162.
  • SHIH LY, LIN TL, WANG PN et al.: Internal tandem duplication of fms-like tyrosine kinase 3 is associated with poor outcome in patients with myelodysplastic syndrome. Cancer (2004) 101(5):989-998.
  • GEORGIOU G, KARALI V, ZOUVELOU C et al.: Serial determination of Flt-3 mutations in myelodysplastic syndrome patients at diagnosis, follow up or acute myeloid leukaemia transformation: incidence and their prognostic significance. Br. J. Haematol. (2006) 134(3):302-306.
  • KIYOI H, YANADA M, OZEKIA K: Clinical significance of Flt-3 in leukemia. Int. J. Hematol. (2005) 82(2):85-92.
  • KIYOI H, NAOE T, NAKANO Y et al.: Prognostic implication of Flt-3 and n-Ras gene mutations in acute myeloid leukemia. Blood (1999) 93(9):3074-3080.
  • ABU-DUHIER FM, GOODEVE AC, WILSON GA et al.: Flt-3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br. J. Haematol. (2000) 111(1):190-195.
  • KIYOI H, NAOE T: Flt-3 mutations in acute myeloid leukemia. Methods Mol. Med. (2006) 125:189-197.
  • KONDO M, HORIBE K, TAKAHASHI Y et al.: Prognostic value of internal tandem duplication of the Flt-3 gene in childhood acute myelogenous leukemia. Med. Pediatr. Oncol. (1999) 33(6):525-529.
  • KIYOI H, TOWATARI M, YOKOTA S et al.: Internal tandem duplication of the Flt-3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia (1998) 12(9):1333-1337.
  • GRIFFITH J, BLACK J, FAERMAN C et al.: The structural basis for autoinhibition of Flt-3 by the juxtamembrane domain. Mol. Cell (2004) 13(2):169-178.
  • MIZUKI M, FENSKI R, HALFTER H et al.: Flt-3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood (2000) 96(12):3907-3914.
  • BIRKENKAMP KU, GEUGIEN M, LEMMINK HH, KRUIJER W, VELLENGA E: Regulation of constitutive STAT5 phosphorylation in acute myeloid leukemia blasts. Leukemia (2001) 15(12):1923-1931.
  • FENSKI R, FLESCH K, SERVE S et al.: Constitutive activation of Flt-3 in acute myeloid leukaemia and its consequences for growth of 32D cells. Br. J. Haematol. (2000) 108(2):322-330.
  • YAMAMOTO Y, KIYOI H, NAKANO Y et al.: Activating mutation of D835 within the activation loop of Flt-3 in human hematologic malignancies. Blood (2001) 97(8):2434-2439.
  • ABU-DUHIER FM, GOODEVE AC, WILSON GA et al.: Identification of novel Flt-3 Asp835 mutations in adult acute myeloid leukaemia. Br. J. Haematology (2001) 113(4):983-988.
  • NOMDEDEU JF, BRUNET S, COLOMER D et al.: D835 mutations are commonly associated with other molecular lesions in adult AML. Blood (2001) 98:579a.
  • SCHMIDT-ARRAS D, SCHWABLE J, BOHMER FD, SERVE H: Flt-3 receptor tyrosine kinase as a drug target in leukemia. Curr Pharm Des (2004) 10(16):1867-1883.
  • KIYOI H, NAOE T: Biology, clinical relevance, and molecularly targeted therapy in acute leukemia with Flt-3 mutation. Int. J. Hematol. (2006) 83(4):301-308.
  • O'FARRELL A-M, FORAN JM, FIEDLER W et al.: An innovative Phase I clinical study demonstrates inhibition of Flt-3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin. Cancer Res. (2003) 9(15):5465-5476.
  • GOLUB TR, BARKER GF, LOVETT M, GILLILAND DG: Fusion of PDGF receptor β to a novel ETS-like gene, TEL, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell (1994) 77(2):307-316.
  • BARTRAM C R, DE KLEIN A, HAGEMEIJER A et al.: Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature (1983) 306(5940):277-280.
  • PERCY MJ, MCMULLIN MF: The V617F Jak-2 mutation and the myeloproliferative disorders. Hematol. Oncol. (2005) 23(3-4):91-93.
  • VALENTINO L, PIERRE J: Jak/STAT signal transduction: Regulators and implication in hematological malignancies. Biochem. Pharmacol. (2006) 71(6):713-721.
  • UGO V, MARZAC C, TEYSSANDIER I et al.: Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp. Hematol. (2004) 32(2):179-187.
  • KRALOVICS R, GUAN Y, PRCHAL JT: Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp. Hematol. (2002) 30(3):229-236.
  • KRALOVICS R, PASSAMONTI F, BUSER AS et al.: A gain-of-function mutation of Jak-2 in myeloproliferative disorders. N. Engl. J. Med. (2005) 352(17):1779-1790.
  • JAMES C, UGO V, LE COUEDIC J-P et al.: A unique clonal Jak-2 mutation leading to constitutive signalling causes polycythaemia vera. Nature (2005) 434(7037):1144-1148.
  • BAXTER EJ, SCOTT LM, CAMPBELL PJ et al.: Acquired mutation of the tyrosine kinase Jak-2 in human myeloproliferative disorders. The Lancet (2005) 365(9464):1054-1061.
  • LEVINE RL, WADLEIGH M, COOLS J et al.: Activating mutation in the tyrosine kinase Jak-2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell (2005) 7(4):387-397.
  • JONES AV, KREIL S, ZOI K et al.: Widespread occurrence of the Jak-2 V617F mutation in chronic myeloproliferative disorders. Blood (2005) 106(6):2162-2168.
  • CUNNINGHAM D, HUMBLET Y, SIENA S et al.: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. (2004) 351(4):337-345.
  • MORONI M, VERONESE S, BENVENUTI S et al.: Gene copy number for EGFR and clinical response to anti-EGFR treatment in colorectal cancer: a cohort study. The Lancet Oncology (2005) 6(5):279-286.
  • LIEVRE A, BACHET J-B, LE CORRE D et al.: KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. (2006) 66(8):3992-3995.
  • LEBEDEVA IV, SARKAR D, SU ZZ et al.: Molecular target-based therapy of pancreatic cancer. Cancer Res. (2006) 66(4):2403-2413.
  • ITTMANN MM: Chromosome 10 alterations in prostate adenocarcinoma (review). Oncol. Rep. (1998) 5(6):1329-1335.
  • MAEHAMA T, DIXON JE: The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. (1998) 273(22):13375-13378.
  • STAMBOLIC V, SUZUKI A, DE LA POMPA JL et al.: Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell (1998) 95(1):29-39.
  • TASHIRO H, BLAZES MS, WU R et al.: Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. (1997) 57(18):3935-3940.
  • RISINGER JI, HAYES AK, BERCHUCK A, BARRETT JC: PTEN/MMAC1 mutations in endometrial cancers. Cancer Res. (1997) 57(21):4736-4738.
  • MAXWELL GL, RISINGER JI, GUMBS C et al.: Mutation of the PTEN tumor suppressor gene in endometrial hyperplasias. Cancer Res. (1998) 58(12):2500-2503.
  • TENG DH, HU R, LIN H et al.: MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res. (1997) 57(23):5221-5225.
  • PERREN A, WENG LP, BOAG AH et al.: Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am. J. Pathol. (1999) 155(4):1253-1260.
  • BIRCK A, AHRENKIEL V, ZEUTHEN J, HOU-JENSEN K, GULDBERG P: Mutation and allelic loss of the PTEN/MMAC1 gene in primary and metastatic melanoma biopsies. J. Invest. Dermatol. (2000) 114(2):277-280.
  • TSAO H, ZHANG X, BENOIT E, HALUSKA FG: Identification of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. Oncogene (1998) 16(26):3397-3402.
  • GULDBERG P, THOR STRATEN P, BIRCK A et al.: Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res. (1997) 57(17):3660-3663.
  • HALACHMI N, HALACHMI S, EVRON E et al.: Somatic mutations of the PTEN tumor suppressor gene in sporadic follicular thyroid tumors. Genes Chromosomes Cancer (1998) 23(3):239-243.
  • PARSONS DW, WANG TL, SAMUELS Y et al.: Colorectal cancer: mutations in a signalling pathway. Nature (2005) 436(7052):792.
  • DAVIES H, HUNTER C, SMITH R et al.: Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. (2005) 65(17):7591-7595.
  • STEPHENS P, EDKINS S, DAVIES H et al.: A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat. Genet. (2005) 37(6):590-592.
  • WANG Z, SHEN D, PARSONS DW et al.: Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science (2004) 304(5674):1164-1166.
  • BARDELLI A, PARSONS DW, SILLIMAN N et al.: Mutational analysis of the tyrosine kinome in colorectal cancers. Science (2003) 300(5621):949.
  • LIOTTA LA, ESPINA V, MEHTA AI et al.: Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell (2003) 3(4):317-325.
  • BASELGA J: Targeting tyrosine kinases in cancer: the second wave. Science (2006) 312(5777):1175-1178.
  • RATAIN MJ, EISEN T, STADLER WM et al.: Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. (2006) 24(16):2505-2512.
  • SACHSE C, ECHEVERRI CJ: Oncology studies using siRNA libraries: the dawn of RNAi-based genomics. Oncogene (2005) 23(51):8384-8391.
  • KAELIN WG Jr: The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer (2005) 5(9):689-698.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.