86
Views
0
CrossRef citations to date
0
Altmetric
Articles

Enhancing multi-crystalline silicon wafer performance through surface modification and AZO treatment

, , &
Pages 823-835 | Received 03 Apr 2023, Accepted 18 Sep 2023, Published online: 28 Sep 2023
 

ABSTRACT

In the current work, we studied the influence of surface modification on reflectivity and minority carrier lifetime of mc-Si wafer taken from ingot grown by DS process. Two etchants combination namely, KOH/IPA/DI water, and NaOCl/KOH/IPA/DI water are used for different time durations. Reflectance and minority carrier lifetime vary significantly for both etchants used in this work. Optimised micro pyramidal structure formation will aid in enhancing the total internal reflection thereby increasing light absorption. Increase in minority carrier lifetime will be helpful in increasing the efficiency of solar cell. In order to establish the effect of etching on reflectivity of wafers, Al-doped ZnO was sputtered on etched surface and reflectivity was found to decrease further as observed from the reflectivity spectrum. I-V measurements were carried out on Ag/Ti/AZO/mc-Si/Ag and effect of etching on contact behaviour was observed. AZO-coated Si surface with optimised surface micro pyramids served as a good antireflection layer.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors thank Department of Science and Technology, India (DST) for providing the financial support to carry out this work (Order No. DST/TMD / CERI /RES/ 2020/7(c) dated 31 December 2020).

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.