275
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Self-assembled peptide nanoparticles for efficient delivery of methotrexate into cancer cells

ORCID Icon, , ORCID Icon, , , ORCID Icon, , , & ORCID Icon show all
Pages 521-530 | Received 10 Aug 2019, Accepted 14 Feb 2020, Published online: 05 Mar 2020
 

Abstract

The low cellular uptake of Methotrexate (MTX), a commonly used anticancer drug, is a big challenge for efficient cancer therapy. Self-assembled peptide nanoparticles (SAPNs) are one of the major classes of peptide vectors that have gained much attention toward novel drug delivery systems. In the present study, different sequences of cell-penetrating peptides including R2W4R2 and W3R4W3 and their SAPNs (R2W4R2-E12 and W3R4W3-E12) were designed for efficient delivery of MTX into MCF7 breast cancer cells. Based on electron microscopy results, the obtained SAPNs were in nano scale with spherical shape. There was a positive relationship between the free energy of water to octanol transferring and cellular penetration of designed nanostructures. The R2W4R2 possessed proper free energy and ability to form a spherical structure and hydrophobic–hydrophobic interactions, therefore, exhibited more cellular penetration than W3R4W3. The cellular uptake of obtained nanoparticles was examined by flow cytometry and fluorescence microscopy, in which, R2W4R2 and R2W4R2-E12 showed more appropriate penetration into MCF7 cells than W3R4W3 and W3R4W3-E12. The cytotoxicity of MTX-loaded peptides and SAPNs was examined by MTT assay. As a result, at higher concentrations, the R2W4R2 and R2W4R2-E12 showed higher cytotoxic behavior than their counterparts. Despite their enhanced cellular internalization, the cytotoxic behavior of MTX-loaded SAPNs at lower concentrations was relatively less than free MTX, which could be ascribed to the gradual nature of drug detachment from these conjugates. Therefore, R2W4R2 could be considered as an efficient choice to enhance the therapeutic efficiency of MTX in cancer treatments.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the ‘Drug Applied Research Center’ and ‘Research Center for Pharmaceutical Nanotechnology’ of Ali Shirani in Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences [grant number 5/79/1709].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.