277
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Self-assembled peptide nanoparticles for efficient delivery of methotrexate into cancer cells

ORCID Icon, , ORCID Icon, , , ORCID Icon, , , & ORCID Icon show all
Pages 521-530 | Received 10 Aug 2019, Accepted 14 Feb 2020, Published online: 05 Mar 2020

References

  • Prodanowich S, Ma F, Taylor JR, et al. Methotrexate reduces incidence of vascular diseases in veterans with psoriasis or rheumatoid arthritis. J Am Acad Dermatol. 2005;52(2):262–267.
  • Gressier B, Lebegue S, Brunet C, et al. Pro-oxidant properties of methotrexate: evaluation and prevention by an anti-oxidant drug. Die Pharmazie. 1994;49(9):679–681.
  • Neradil J, Pavlasova G, Veselska R. New mechanisms for an old drug; DHFR- and non-DHFR-mediated effects of methotrexate in cancer cells. Klin Onkol. 2012;25(Suppl 2):2S87–2S92.
  • Zachariae H. Methotrexate side-effects. Br J Dermatol. 1990;122(s36):127–133.
  • Cudmore J, Seftel M, Sisler J, et al. Methotrexate and trimethoprim-sulfamethoxazole: toxicity from this combination continues to occur. Can Fam Physician. 2014;60(1):53–56.
  • Imanishi H, Okamura N, Yagi M, et al. Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. J Hum Genet. 2007;52(2):166–171.
  • Kaasgaard T, Andresen TL, Jensen SS, et al. Liposomes containing alkylated methotrexate analogues for phospholipase A(2) mediated tumor targeted drug delivery. Chem Phys Lipids. 2009;157(2):94–103.
  • Gurdag S, Khandare J, Stapels S, et al. Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconjugate Chem. 2006;17(2):275–283.
  • Budagavi DP, Chugh A. Antibacterial properties of Latarcin 1 derived cell-penetrating peptides. Eur J Pharm Sci. 2018;115:43–49.
  • Koutsiouki K, Angelopoulou A, Ioannou E, et al. TAT peptide-conjugated magnetic PLA-PEG nanocapsules for the targeted delivery of paclitaxel: in vitro and cell studies. AAPS PharmSciTech. 2017;18(3):769–781.
  • Li Y, Kwon GS. Micelle-like structures of poly(ethylene oxide)-block-poly(2-hydroxyethyl aspartamide)-methotrexate conjugates. Colloids Surf B Biointerfaces. 1999;16(1–4):217–226.
  • Bai KB, Láng O, Orbán E, et al. Design, synthesis, and in vitro activity of novel drug delivery systems containing tuftsin derivatives and methotrexate. Bioconjugate Chem. 2008;19(11):2260–2269.
  • Bonifaci N, Sitia R, Rubartelli A. Nuclear translocation of an exogenous fusion protein containing HIV Tat requires unfolding. Aids. 1995;9(9):995–1000.
  • Salehi R, Hamishehkar H, Eskandani M, et al. Development of dual responsive nanocomposite for simultaneous delivery of anticancer drugs. J Drug Target. 2014;22(4):327–342.
  • Farshbaf M, Salehi R, Annabi N, et al. pH- and thermo-sensitive MTX-loaded magnetic nanocomposites: synthesis, characterization, and in vitro studies on A549 lung cancer cell and MR imaging. Drug Dev Ind Pharm. 2018;44(3):452–462.
  • Hoyer J, Neundorf I. Peptide vectors for the nonviral delivery of nucleic acids. Acc Chem Res. 2012;45(7):1048–1056.
  • Luan L, Meng Q, Xu L, et al. Peptide amphiphiles with multifunctional fragments promoting cellular uptake and endosomal escape as efficient gene vectors. J Mater Chem B. 2015;3(6):1068–1078.
  • Mussa Farkhani S, Asoudeh Fard A, Zakeri-Milani P, et al. Enhancing antitumor activity of silver nanoparticles by modification with cell-penetrating peptides. Artif Cell Nanomed Biotech. 2017;45(5):1029–1035.  
  • Farkhani SM, Shirani A, Mohammadi S, et al. Effect of poly-glutamate on uptake efficiency and cytotoxicity of cell penetrating peptides. IET Nanobiotechnology. 2016; 10 (2):87–95. Available from: https://digital-library.theiet.org/content/journals/10.1049/iet-nbt.2015.0030
  • Chen J, Li S, Shen Q. Folic acid and cell-penetrating peptide conjugated PLGA–PEG bifunctional nanoparticles for vincristine sulfate delivery. Eur J Pharm Sci. 2012;47(2):430–443.
  • Lanar D, Burkhard P. Malaria vaccine of self-assembling polypeptide nanoparticles. Google Patents WO2010002818A2. 2012.
  • Niazi M, Zakeri-Milani P, Najafi Hajivar S, et al. Nano-based strategies to overcome p-glycoprotein-mediated drug resistance. Expert Opin Drug Metab Toxicol. 2016;12(9):1021–1033.
  • Zakeri-Milani P, Farkhani SM; A Shirani, et al. Cellular uptake and anti-tumor activity of gemcitabine conjugated with new amphiphilic cell penetrating peptides. Excli J. 2017;16:650–662.
  • Sigg SJ, Postupalenko V, Duskey JT, et al. Stimuli-responsive codelivery of oligonucleotides and drugs by self-assembled peptide nanoparticles. Biomacromolecules. 2016;17(3):935–945.
  • He B, Ma S, Peng G, et al. TAT-modified self-assembled cationic peptide nanoparticles as an efficient antibacterial agent. Nanomed Nanotechnol Biol Med. 2018;14(2):365–372.
  • Guan S, Munder A, Hedtfeld S, et al. Self-assembled peptide–poloxamine nanoparticles enable in vitro and in vivo genome restoration for cystic fibrosis. NAT Nanotechnol. 2019;14(3):287–297.
  • Qi GB, Gao YJ, Wang L, et al. Self‐assembled peptide‐based nanomaterials for biomedical imaging and therapy. Adv Mater. 2018;30(22):1703444.
  • Abbas M, Zou Q, Li S, et al. Self‐assembled peptide‐and protein‐based nanomaterials for antitumor photodynamic and photothermal therapy. Adv Mater. 2017;29(12):1605021.
  • Hamley IW. Self-assembly of amphiphilic peptides. Soft Matter. 2011;7(9):4122–4138.
  • Yau WM, Wimley WC, Gawrisch K, et al. The preference of tryptophan for membrane interfaces. Biochem. 1998;37(42):14713–14718.
  • Rydberg HA, Matson M, Amand HL, et al. Effects of tryptophan content and backbone spacing on the uptake efficiency of cell-penetrating peptides. Biochem. 2012;51(27):5531–5539.
  • Killian JA, von Heijne G. How proteins adapt to a membrane-water interface. Trends Biochem Sci. 2000;25(9):429–434.
  • Shirani A, Shahbazi Mojarrad J, Mussa Farkhani S, et al. The relation between thermodynamic and structural properties and cellular uptake of peptides containing tryptophan and arginine. Adv Pharm Bull. 2015;5(2):161–168.
  • Herrmann US, Schütz AK, Shirani H, et al. Structure-based drug design identifies polythiophenes as antiprion compounds. Sci Transl Med. 2015;7(299):299ra123.
  • Klingstedt T, Shirani H, Mahler J, et al. Distinct spacing between anionic groups: an essential chemical determinant for achieving thiophene-based ligands to distinguish beta-amyloid or tau polymorphic aggregates. Chem Eur J. 2015;21(25):9072–9082.
  • Mohammadi S, Shahbazi Mojarrad J, Zakeri-Milani P, et al. Synthesis and in vitro evaluation of amphiphilic peptides and their nanostructured conjugates. Adv Pharm Bull. 2015;5(1):41–49.
  • Li H, Lawrence DS. Acquisition of Fyn-selective SH3 domain ligands via a combinatorial library strategy. Chem Biol. 2005;12(8):905–912.
  • Richard JP, Melikov K, Vives E, et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem. 2003;278(1):585–590.
  • Wimley WC, White SH. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Mol Biol. 1996;3(10):842–848.
  • Meuzelaar H, Vreede J, Woutersen S. Influence of Glu/Arg, Asp/Arg, and Glu/Lys salt bridges on α-helical stability and folding kinetics. Biophys J. 2016;110(11):2328–2341.
  • Salvin SB, Nishio J, Gribik M. Lymphoid cells in delayed hypersensitivity: I. In vitro vs. in vivo responses. Cell Immunol. 1970;1(1):62–77.
  • Winter E, Pizzol C, Locatelli C, et al. In vitro and in vivo effects of free and chalcones-loaded nanoemulsions: insights and challenges in targeted cancer chemotherapies. IJERPH. 2014;11(10):10016–10035.
  • Rosowsky A. Methotrexate analogs. 2. Facile method of preparation of lipophilic derivatives of methotrexate and 3’,5’-dichloromethotrexate by direct esterification. J Med Chem. 1973;16(10):1190–1193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.