259
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Agonism activities of lyso-phosphatidylcholines (LPC) Ligands binding to peroxisome proliferator-activated receptor gamma (PPARγ)

, & ORCID Icon
Pages 398-409 | Received 05 Nov 2018, Accepted 26 Jan 2019, Published online: 26 Apr 2019
 

Abstract

PPARγ is an isoform of peroxisome proliferator-activated receptor (PPAR) belonging to a super family of nuclear receptors and is a primary target of the effective drug to treat the type II diabetes. The experiments found that Lyso-phosphatidylcholines (LPC) could bind to PPARγ, but the binding modes remain unknown. We used the Molecular Docking and Molecular Dynamic (MD) simulations to study the binding of four LPC ligands (LPC16:0, LPC18:0, LPC18:1-1 and LPC18:1-2) to PPARγ. The two-step MD simulations were employed to determine the final binding modes. The 20 ns MD simulations for four final LPC-PPARγ complexes were performed to analyze their structures, the binding key residues, and agonism activities. The results reveal that three LPC ligands (LPC16:0, LPC18:0 and LPC18:1-1) bind to Arm II and III regions of the Ligand Binding Domain (LBD) pocket, whereas they do not interact with Tyr473 of Helix 12 (H12). In contrast, LPC18:1-2 can form the hydrogen bonds with Tyr473 and bind into Arm I and II regions. Comparing with the paradigm systems of the full agonist (Rosiglitazone–PPARγ) and the partial agonist (MRL24–PPARγ), our results indicate that LPC16:0, LPC18:0 and LPC18:1-1 could be the potential partial agonists and LPC18:1-2 could be a full agonist. The in-depth analysis of the residue fluctuations and structure alignment confirm the present prediction of the LPC agonism activities.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare no competing financial interests or benefit.

Additional information

Funding

This work was supported by National Natural Science Foundation of China under Grant 21773226.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.