266
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Agonism activities of lyso-phosphatidylcholines (LPC) Ligands binding to peroxisome proliferator-activated receptor gamma (PPARγ)

, & ORCID Icon
Pages 398-409 | Received 05 Nov 2018, Accepted 26 Jan 2019, Published online: 26 Apr 2019

References

  • Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M., & Evans, R. M. (2013). PPARγ signaling and metabolism: The good, the bad and the future. Nature Medicine, 19(5), 557. doi:10.1038/nm.3159
  • Al Sharif, M., Tsakovska, I., Pajeva, I., Alov, P., Fioravanzo, E., Bassan, A., … Cronin, M. T. D. (2017). The application of molecular modelling in the safety assessment of chemicals: A case study on ligand-dependent PPARγ dysregulation. Toxicology, 392, 140–154. doi:10.1016/j.tox.2016.01.009
  • Álvarez-Almazán, S., Bello, M., Tamay-Cach, F., Martínez-Archundia, M., Alemán-González-Duhart, D., Correa-Basurto, J., & Mendieta-Wejebe, J. E. (2017). Study of new interactions of glitazone’s stereoisomers and the endogenous ligand 15d-PGJ2 on six different PPAR gamma proteins. Biochemical Pharmacology, 142, 168–193.
  • Ambrosio, A. L., Dias, S. M., Polikarpov, I., Zurier, R. B., Burstein, S. H., & Garratt, R. C. (2007). Ajulemic acid, a synthetic nonpsychoactive cannabinoid acid, bound to the ligand binding domain of the human peroxisome proliferator-activated receptor gamma. Journal of Biological Chemistry, 282(25), 18625–18633. doi:10.1074/jbc.M702538200
  • Atanasov, A. G., Wang, J. N., Gu, S. P., Bu, J., Kramer, M. P., Baumgartner, L., … Heiss, E. H. (2013). Honokiol: A non-adipogenic PPARγ agonist from nature. Biochimica et Biophysica Acta, 1830(10), 4813–4819. doi:10.1016/j.bbagen.2013.06.021
  • Bayly, C. I., Cieplak, P., Cornell, W., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. The Journal of Physical Chemistry, 97(40), 10269–10280. doi:10.1021/j100142a004
  • Becke, A. D. (1992). Density-functional thermochemistry. 1. The effect of the exchange-only gradient correction. Journal of Chemical Physics, 96(3), 2155–2160. doi:10.1063/1.462066
  • Becke, A. D. (1993). Density-functional thermochemistry. 3. The role of exact exchange. Journal of Chemical Physics, 98(7), 5648–5652. doi:10.1063/1.464913
  • Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., … Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(W1), W252–W258. doi:10.1093/nar/gku340
  • Bruning, J. B., Chalmers, M. J., Prasad, S., Busby, S. A., Kamenecka, T. M., He, Y., … Griffin, P. R. (2007). Partial agonists activate PPARγ using a helix 12 independent mechanism. Structure, 15(10), 1258–1271. doi:10.1016/j.str.2007.07.014
  • Chawla, A., Repa, J. J., Evans, R. M., & Mangelsdorf, D. J. (2001). Nuclear receptors and lipid physiology: Opening the X-files. Science (New York, N.Y.), 294(5548), 1866. doi:10.1126/science.294.5548.1866
  • Choi, J. H., Banks, A. S., Estall, J. L., Kajimura, S., Boström, P., Laznik, D., … Spiegelman, B. M. (2010). Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature, 466(7305), 451–456. doi:10.1038/nature09291
  • Choi, J. H., Banks, A. S., Kamenecka, T. M., Busby, S. A., Chalmers, M. J., Kumar, N., … Griffin, P. R. (2011). Antidiabetic actions of a non-agonist PPARgamma ligand blocking Cdk5-mediated phosphorylation. Nature, 477(7365), 477–481.
  • D. A., Case, D. S., Cerutti, T. E., Cheatham, I. T. A., Darden, R. E., Duke, T. J., Giese, … Kollman, P. A. (2017). AMBER 16. San Francisco: University of California.
  • Day, C. (1999). Thiazolidinediones: A new class of antidiabetic drugs. Diabetic Medicine , 16(3), 179–192.
  • Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self-consistent molecular-orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. Journal of Chemical Physics, 54(2), 724. doi:10.1063/1.1674902
  • Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., & Baker, N. A. (2007). PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research, 35(Web Server), W522–W525. doi:10.1093/nar/gkm276
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. doi:10.1063/1.470117
  • Genheden, S., Akke, M., & Ryde, U. (2014). Conformational entropies and order parameters: Convergence, reproducibility, and transferability. Journal of Chemical Theory and Computation, 10(1), 432–438. doi:10.1021/ct400747s
  • Hughes, T. S., Giri, P. K., de Vera, I. M. S., Marciano, D. P., Kuruvilla, D. S., Shin, Y., … Kojetin, D. J. (2014). An alternate binding site for PPARγ ligands. Nature Communications, 5, 3571–3571.
  • Jia, W.-Q., Jing, Z., Liu, X., Feng, X.-Y., Liu, Y.-Y., Wang, S.-Q., … Cheng, X.-C. (2018). Virtual identification of novel PPARα/γ dual agonists by scaffold hopping of saroglitazar. Journal of Biomolecular Structure and Dynamics, 36(13), 3496–3512. doi:10.1080/07391102.2017.1392363
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. doi:10.1063/1.445869
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., … Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. doi:10.1021/ar000033j
  • Kroker, A. J., & Bruning, J. B. (2015). Review of the structural and dynamic mechanisms of PPARγ partial agonism. PPAR Research, 2015, 816856doi:10.1155/2015/816856
  • Kuhn, B., & Kollman, P. A. (2000). Binding of a diverse set of ligands to avidin and streptavidin: An accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. Journal of Medicinal Chemistry, 43(20), 3786–3791. doi:10.1021/jm000241h
  • Lauber, K., Bohn, E., Kröber, S. M., Xiao, Y-J., Blumenthal, S. G., Lindemann, R. K., … Wesselborg, S. (2003). Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell, 113(6), 717–730. doi:10.1016/S0092-8674(03)00422-7
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789. doi:10.1103/PhysRevB.37.785
  • Lee, W., Ham, J., Kwon, H. C., Kim, Y. K., & Kim, S.-N. (2013). Anti-diabetic effect of amorphastilbol through PPARα/γ dual activation in db/db mice. Biochemical and Biophysical Research Communications, 432(1), 73–79. doi:10.1016/j.bbrc.2013.01.083
  • Lehrke, M., & Lazar, M. A. (2005). The many faces of PPARgamma. Cell, 123(6), 993–999. doi:10.1016/j.cell.2005.11.026
  • Li, X., Fang, P., Li, Y., Kuo, Y.-M., Andrews, A. J., Nanayakkara, G., … Yang, X. (2016). Mitochondrial reactive oxygen species mediate lysophosphatidylcholine-induced endothelial cell activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(6), 1090–1100. doi:10.1161/ATVBAHA.115.306964
  • Liu, X., Jing, Z., Jia, W.-Q., Wang, S.-Q., Ma, Y., Xu, W.-R., … Cheng, X.-C. (2018). Identification of novel PPARα/γ dual agonists by virtual screening, ADMET prediction and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 36(11), 2988–3002.
  • Li, X., Shao, Y., Sha, X., Fang, P., Kuo, Y.-M., Andrews, A. J., … Yang, X. (2018). IL-35 (Interleukin-35) suppresses endothelial cell activation by inhibiting mitochondrial reactive oxygen species-mediated site-specific acetylation of H3K14 (Histone 3 Lysine 14). Arteriosclerosis, Thrombosis, and Vascular Biology, 38(3), 599–609. doi:10.1161/ATVBAHA.117.310626
  • Li, Y., Wang, Z., Furukawa, N., Escaron, P., Weiszmann, J., Lee, G., … Chen, J.-L. (2008). T2384, a novel antidiabetic agent with unique peroxisome proliferator-activated receptor γ binding properties. Journal of Biological Chemistry, 283(14), 9168–9176. doi:10.1074/jbc.M800104200
  • Li, Y., Zhang, J., Schopfer, F. J., Martynowski, D., Garcia-Barrio, M. T., Kovach, A., … Xu, H. E. (2008). Molecular recognition of nitrated fatty acids by PPARγ. Nature Structural & Molecular Biology, 15, 865. doi:10.1038/nsmb.1447
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 78(8), 1950–1958. doi:10.1002/prot.22711
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Fox, … J. (2010). Gaussian 09, revision D.1. Wallingford, CT: Gaussian, Inc.
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. doi:10.1021/ct300418h
  • Muñoz-Gutiérrez, C., Sepúlveda, C., Caballero, J., Palomo, I., & Fuentes, E. (2017). Study of the interactions between edaglitazone and ciglitazone with PPARγ and their antiplatelet profile. Life Sciences, 186, 59–65. doi:10.1016/j.lfs.2017.07.031
  • Mueller, M., & Jungbauer, A. (2008). Red clover extract: A putative source for simultaneous treatment of menopausal disorders and the metabolic syndrome. Menopause, 15(6), 1120–1131. doi:10.1097/gme.0b013e31817062ce
  • Muralikumar, S., Vetrivel, U., Narayanasamy, A., & N. Das, U. (2017). Probing the intermolecular interactions of PPARγ-LBD with polyunsaturated fatty acids and their anti-inflammatory metabolites to infer most potential binding moieties. Lipids in Health and Disease, 16(1), 17.
  • Nissen, S. E., & Wolski, K. (2007). Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. The New England Journal of Medicine, 356(24), 2457–2471. doi:10.1056/NEJMoa072761
  • Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., … Milburn, M. V. (1998). Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature, 395(6698), 137. doi:10.1038/25931
  • Pearson, S. L., Cawthorne, M. A., Clapham, J. C., Dunmore, S. J., Holmes, S. D., Moore, G. B. T., … Tadayyon, M. (1996). The thiazolidinedione insulin sensitiser, BRL 49653, increases the expression of PPAR-gamma and aP2 in adipose tissue of high-fat-fed rats. Biochemical and Biophysical Research Communications, 229(3), 752–757. doi:10.1006/bbrc.1996.1876
  • Puhl, A. C., Bernardes, A., Silveira, R. L., Yuan, J., Campos, J. L. O., Saidemberg, D. M., … Polikarpov, I. (2012). Mode of peroxisome proliferator-activated receptor γ activation by luteolin. Molecular Pharmacology, 81(6), 788. doi:10.1124/mol.111.076216
  • Qin, Q., Wang, B., Wang, J., Chang, M., Xia, T., Shi, X., & Xu, G. (2019). A comprehensive strategy for studying protein-metabolite interactions by metabolomics and native mass spectrometry. Talanta, 194, 63–72. doi:10.1016/j.talanta.2018.10.010
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. doi:10.1016/0021-9991(77)90098-5
  • Schupp, M., & Lazar, M. A. (2010). Endogenous ligands for nuclear receptors: Digging deeper. Journal of Biological Chemistry, 285(52), 40409–40415. doi:10.1074/jbc.R110.182451
  • Sharifi, T., & Ghayeb, Y. (2018). A computational study to identify the key residues of peroxisome proliferator-activated receptor gamma in the interactions with its antagonists. Journal of Biomolecular Structure and Dynamics, 36(7), 1822–1833. doi:10.1080/07391102.2017.1335618
  • Singh, S., & Mohanty, A. (2018). In silico identification of potential drug compound against Peroxisome proliferator-activated receptor-gamma by virtual screening and toxicity studies for the treatment of Diabetic Nephropathy. Journal of Biomolecular Structure and Dynamics, 36(7), 1776–1787. doi:10.1080/07391102.2017.1334596
  • Sun, H., Duan, L., Chen, F., Liu, H., Wang, Z., Pan, P., … Hou, T. (2018). Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Physical Chemistry Chemical Physics, 20(21), 14450–14460.
  • Takada, I., & Makishima, M. (2015). PPARγ ligands and their therapeutic applications: A patent review (2008 – 2014). Expert Opinion on Therapeutic Patents, 25(2), 175–191. doi:10.1517/13543776.2014.985206
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461. doi:10.1002/jcc.21334
  • Tsakovska, I., Al Sharif, M., Alov, P., Diukendjieva, A., Fioravanzo, E., Cronin, M. T. D., & Pajeva, I. (2014). Molecular modelling study of the PPARγ receptor in relation to the mode of action/adverse outcome pathway framework for liver steatosis. International Journal of Molecular Sciences, 15(5), 7651–7666. doi:10.3390/ijms15057651
  • Waku, T., Shiraki, T., Oyama, T., Fujimoto, Y., Maebara, K., Kamiya, N., … Morikawa, K. (2009). Structural insight into PPARgamma activation through covalent modification with endogenous fatty acids. Journal of Molecular Biology, 385(1), 188–199. doi:10.1016/j.jmb.2008.10.039
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. doi:10.1002/jcc.20035
  • Wang, L., Waltenberger, B., Pferschy-Wenzig, E.-M., Blunder, M., Liu, X., Malainer, C., … Atanasov, A. G. (2014). Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochemical Pharmacology, 92(1), 73–89. doi:10.1016/j.bcp.2014.07.018
  • Weidner, C., de Groot, J. C., Prasad, A., Freiwald, A., Quedenau, C., Kliem, M., … Sauer, S. (2012). Amorfrutins are potent antidiabetic dietary natural products. Proceedings of the National Academy of Sciences of United States of America, 109(19), 7257–7262. doi:10.1073/pnas.1116971109
  • Weidner, C., Wowro, S. J., Freiwald, A., Kawamoto, K., Witzke, A., Kliem, M., … Sauer, S. (2013). Amorfrutin B is an efficient natural peroxisome proliferator-activated receptor gamma (PPARγ) agonist with potent glucose-lowering properties. Diabetologia, 56(8), 1802–1812. doi:10.1007/s00125-013-2920-2
  • Zoete, V., Grosdidier, A., & Michielin, O. (2007). Peroxisome proliferator-activated receptor structures: Ligand specificity, molecular switch and interactions with regulators. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1771(8), 915–925. doi:10.1016/j.bbalip.2007.01.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.