481
Views
3
CrossRef citations to date
0
Altmetric
Review Article

A Review on Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Ag(I) Ions

ORCID Icon & ORCID Icon
Published online: 17 Oct 2022
 

Abstract

Organic compounds display several electronic and structural features which enable their application in various fields, ranging from biological to non-biological. These compounds contain heteroatoms like sulfur, nitrogen and oxygen, which provide coordination sites to act as ligands in the field of coordination chemistry and are used as chemosensors to detect various metal ions. This review article covers different organic compounds including thiourea, Schiff base, pyridine, thiophene, coumarin, triazolyl pyrenes, imidazole, fluorescein, thiazole, tricarbocyanine, rhodanine, porphyrin, hydrazone, benzidine and other functional groups based chemosensors, that contain heteroatoms like sulfur, nitrogen and, oxygen for fluorimetric and colorimetric detection of Ag+ in different environmental, agricultural, and biological samples. Further, the sensing mechanism and performances of these chemosensors have been discussed, which could help the readers for the future design of highly efficient, selective, and sensitive chemosensors for the detection and determination of Ag+ ions.

Graphical Abstract

Disclosure statement

Authors declare no conflict of interest

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 451.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.