490
Views
3
CrossRef citations to date
0
Altmetric
Review Article

A Review on Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Ag(I) Ions

ORCID Icon & ORCID Icon

References

  • Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng. 2021, 9, 106381. DOI: 10.1016/j.jece.2021.106381.
  • Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal Importance, Coordination Chemistry with Selected Metals (Cu, Ag, Au) and Chemosensing of Thiourea Derivatives. A Review. Crit. Rev. Anal. Chem. 2020, 51(8), 1–23. DOI: 10.1080/10408347.2020.1777523.
  • Gul, Z.; Ullah, S.; Khan, S.; Ullah, H.; Khan, M. U.; Ullah, M.; Ali, S.; Altaf, A. A. Recent Progress in Nanoparticles Based Sensors for the Detection of Mercury (II) Ions in Environmental and Biological Samples. Crit. Rev. Anal. Chem. 2022, 52, 1–17. DOI: 10.1080/10408347.2022.2049676.
  • Alharbi, K. H. A Review on Organic Colorimetric and Fluorescent Chemosensors for the Detection of Zn(II) Ions. Crit. Rev. Anal. Chem. 2022, 52, 1–17. DOI: 10.1080/10408347.2022.2033611.
  • Keleş, E.; Aydıner, B.; Nural, Y.; Seferoğlu, N.; Şahin, E.; Seferoğlu, Z. Cover Feature: A New Mechanism for Selective Recognition of Cyanide in Organic and Aqueous Solution (Eur. J. Org. Chem. 30/2020). Eur. J. Org. Chem. 2020, 2020, 4640–4640. DOI: 10.1002/ejoc.202001038.
  • Nural, Y.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Atabey, H.; Seferoğlu, Z. New Naphthoquinone-Imidazole Hybrids: Synthesis, Anion Recognition Properties, DFT Studies and Acid Dissociation Constants. J. Mol. Liq. 2021, 327, 114855. DOI: 10.1016/j.molliq.2020.114855.
  • Muhammad, M.; Khan, S.; Fayaz, H. Charge-Transfer Complex–Based Spectrophotometric Method for the Determination of Mesotrione in Environmental Samples. Environ. Monit. Assess. 2021, 193, 1–7. DOI: 10.1007/S10661-021-09432-0.
  • Vardhan, K. H.; Kumar, P. S.; Panda, R. C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197. DOI: 10.1016/j.molliq.2019.111197.
  • Fu, Z.; Xi, S. The Effects of Heavy Metals on Human Metabolism. Toxicol Mech Method. 2020, 30, 167–176. DOI: 10.1080/15376516.2019.1701594.
  • Asuquo Isangedighi, I.; Samuel David, G.; Author, C. Heavy Metals Contamination in Fish: Effects on Human Health. J. Aquat. Sci. Mar. Biol. 2019, 2, 7-12.
  • Abdel-Haleem, A. S.; Sroor, A.; El-Bahi, S. M.; Zohny, E. Heavy Metals and Rare Earth Elements in Phosphate Fertilizer Components Using Instrumental Neutron Activation Analysis. Appl Radiat Isot. 2001, 55, 569–573. DOI: 10.1016/S0969-8043(01)00098-7.
  • He, Z. L.; Yang, X. E.; Stoffella, P. J. Trace Elements in Agroecosystems and Impacts on the Environment. J Trace Elem Med Biol. 2005, 19, 125–140. DOI: 10.1016/J.JTEMB.2005.02.010.
  • Lentini, P.; Zanoli, L.; Granata, A.; Signorelli, S. S.; Castellino, P.; Dell’Aquila, R. Kidney and Heavy metals - The Role of Environmental Exposure (Review). Mol Med Rep. 2017, 15, 3413–3419. DOI: 10.3892/mmr.2017.6389.
  • Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton, D. J. Heavy Metal Toxicity and the Environment. Exp Suppl. 2012, 101, 133–164. DOI: 10.1007/978-3-7643-8340-4_6.
  • Paustenbach, D. J.; Tvermoes, B. E.; Unice, K. M.; Finley, B. L.; Kerger, B. D. A Review of the Health Hazards Posed by Cobalt. Crit Rev Toxicol. 2013, 43, 316–362. DOI: 10.3109/10408444.2013.779633.
  • Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. Review: Environmental Exposure to Mercury and Its Toxicopathologic Implications for Public Health. Environ Toxicol. 2003, 18, 149–175. DOI: 10.1002/TOX.10116.
  • Islam, M. M.; Karim, M. R.; Zheng, X.; Li, X. Heavy Metal and Metalloid Pollution of Soil, Water and Foods in Bangladesh: A Critical Review. IJERPH. 2018, 15, 2825. DOI: 10.3390/ijerph15122825.
  • Igiri, B. E.; Okoduwa, S. I. R.; Idoko, G. O.; Akabuogu, E. P.; Adeyi, A. O.; Ejiogu, I. K. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J. Toxicol. 2018, 2018, 2568038. DOI: 10.1155/2018/2568038.
  • O’Hair, R. A. J.; O’Hair, R. A. J. Silver: The Cultured and Versatile Element. Aust. J. Chem. 2019, 72, 923–926. DOI: 10.1071/CH19395.
  • Renhart, P.; Summer, F.; Grün, F.; Posch, C.; Eder, A. The Tribological Performance of Silver in Aircraft Turbine Load Cases. Tribol. Int. 2021, 163, 107184. DOI: 10.1016/j.triboint.2021.107184.
  • Xu, K.; Pérez-Ràfols, C.; Cuartero, M.; Crespo, G. A. Electrochemical Detection of Trace Silver. Electrochim. Acta. 2021, 374, 137929. DOI: 10.1016/j.electacta.2021.137929.
  • Gao, Z.; Liu, G. G.; Ye, H.; Rauschendorfer, R.; Tang, D.; Xia, X. Facile Colorimetric Detection of Silver Ions with Picomolar Sensitivity. Anal. Chem. 2017, 89, 3622–3629. DOI: 10.1021/ACS.ANALCHEM.6B05026.
  • Alexander, J. W. History of the Medical Use of Silver. Surg. Infect. (Larchmt). 2009, 10, 289–292. https://Home.Liebertpub.Com/Sur. DOI: 10.1089/SUR.2008.9941.
  • Ratte, H. T. Bioaccumulation and Toxicity of Silver Compounds: A Review. Environ. Toxicol. Chem. 1999, 18, 89–108. DOI: 10.1002/etc.5620180112.
  • Hogstrand, C.; Wood, C. M. Toward a Better Understanding of the Bioavailability, Physiology, and Toxicity of Silver in Fish: Implications for Water Quality Criteria. Environ. Toxicol. Chem. 1998, 17, 547–561. DOI: 10.1002/etc.5620170405.
  • Wood, C. M.; Playle, R. C.; Hogstrand, C.; Morgan, t H. Physiology and Modeling of Mechanisms of Silver Uptake and Toxicity in Fish. Environ. Toxicol. Chem. 1999, 18, 71–83. § DOI: 10.1002/etc.5620180110.
  • Quadros, M. E.; Marr, L. C. Environmental and Human Health Risks of Aerosolized Silver Nanoparticles. J Air. Waste Manag. Assoc. 2012, 60(7), 770–781. DOI: 10.3155/1047-3289.60.7.770.
  • Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity following Various Routes of Exposure. IJMS. 2020, 21, 2375. DOI: 10.3390/ijms21072375.
  • Miyayama, T.; Arai, Y.; Hirano, S. Health Effects of Silver Nanoparticles and Silver Ions. Biol. Eff. Fibrous. Part. Subst. 2016, 137–147. DOI: 10.1007/978-4-431-55732-6_7.
  • M. D.; Boudreau, M. S.; Imam, A. M.; Paredes, M. S.; Bryant, C. K.; Cunningham, R. P.; Felton, M. Y.; Jones, K. J.; Davis.; G. R.; Olson. Differential Effects of Silver Nanoparticles and Silver Ions on Tissue Accumulation, Distribution, and Toxicity in the Sprague Dawley Rat following Daily Oral Gavage Administration for 13 Weeks. Toxicol. Sci. 2016, 150, 131–160. DOI: 10.1093/TOXSCI/KFV318.
  • McShan, D.; Ray, P. C.; Yu, H. Molecular Toxicity Mechanism of Nanosilver. J. Food Drug. Anal. 2014, 22, 116–127. DOI: 10.1016/J.JFDA.2014.01.010.
  • Zhang, J. F.; Zhou, Y.; Yoon, J.; Kim, J. S. Recent Progress in Fluorescent and Colorimetric Chemosensors for Detection of Precious Metal Ions (Silver, Gold and Platinum Ions). Chem. Soc. Rev. 2011, 40, 3416–3429. DOI: 10.1039/C1CS15028F.
  • Qu, W. J.; Fang, H.; An, J. N.; Yang, H. H.; He, J. X.; Yao, H.; Wei, T. B.; Lin, Q.; Zhang, Y. M. Highly Sensitive Detection of Mercury(II) and Silver(I) ions in Aqueous Solution via a Chromene-Functionalized Imidazophenazine Derivative. J. Photochem. Photobiol. A Chem. 2020, 402, 112814. DOI: 10.1016/j.jphotochem.2020.112814.
  • Tung, N. H.; Chikae, M.; Ukita, Y.; Viet, P. H.; Takamura, Y. Sensing Technique of Silver Nanoparticles as Labels for Immunoassay Using Liquid Electrode Plasma Atomic Emission Spectrometry. Anal. Chem. 2012, 84, 1210–1213. DOI: 10.1021/AC202782B/SUPPL_FILE/AC202782B_SI_001.PDF.
  • Mohammadi, S. Z.; Afzali, D.; Taher, M. A.; Baghelani, Y. M. Ligandless Dispersive Liquid–Liquid Microextraction for the Separation of Trace Amounts of Silver Ions in Water Samples and Flame Atomic Absorption Spectrometry Determination. Talanta. 2009, 80, 875–879. DOI: 10.1016/J.TALANTA.2009.08.009.
  • Qu, H.; Mudalige, T. K.; Linder, S. W. Capillary Electrophoresis Coupled with Inductively Coupled Mass Spectrometry as an Alternative to Cloud Point Extraction Based Methods for Rapid Quantification of Silver Ions and Surface Coated Silver Nanoparticles. J. Chromatogr. A. 2016, 1429, 348–353. DOI: 10.1016/J.CHROMA.2015.12.033.
  • Hu, Q.; Yang, G.; Zhao, Y.; Yin, J. Determination of Copper, Nickel, Cobalt, Silver, Lead, Cadmium, and Mercury Ions in Water by Solid-Phase Extraction and the RP-HPLC with UV-Vis Detection. Anal. Bioanal. Chem. 2003, 375, 831–835. DOI: 10.1007/S00216-003-1828-Y.
  • Zejli, H.; de Cisneros, J.; Naranjo-Rodriguez, I.; Temsamani, K. R. Stripping Voltammetry of Silver Ions at Polythiophene-Modified Platinum Electrodes. Talanta. 2007, 71, 1594–1598. DOI: 10.1016/J.TALANTA.2006.07.052.
  • Väisänen, A.; Suontamo, R.; Silvonen, J.; Rintala, J. Ultrasound-Assisted Extraction in the Determination of Arsenic, Cadmium, Copper, Lead, and Silver in Contaminated Soil Samples by Inductively Coupled Plasma Atomic Emission Spectrometry. Anal. Bioanal. Chem. 2002, 373, 93–97. DOI: 10.1007/s00216-002-1290-2.
  • Fernandes, G. M.; Silva, W. R.; Barreto, D. N.; Lamarca, R. S.; Lima Gomes, P. C. F.; Flávio da S Petruci, J.; Batista, A. D. Novel Approaches for Colorimetric Measurements in Analytical Chemistry – A Review. Anal. Chim. Acta. 2020, 1135, 187–203. DOI: 10.1016/J.ACA.2020.07.030.
  • Suganya, S.; Naha, S.; Velmathi, S. A Critical Review on Colorimetric and Fluorescent Probes for the Sensing of Analytes via Relay Recognition from the Year 2012–17. ChemistrySelect. 2018, 3, 7231–7268. DOI: 10.1002/slct.201801222.
  • Hung, Y. L.; Hsiung, T. M.; Chen, Y. Y.; Huang, Y. F.; Huang, C. C. Colorimetric Detection of Heavy Metal Ions Using Label-Free Gold Nanoparticles and Alkanethiols. J. Phys. Chem. C. 2010, 114, 16329–16334. DOI: 10.1021/JP1061573/SUPPL_FILE/JP1061573_SI_001.PDF.
  • Knecht, M. R.; Sethi, M. Bio-Inspired Colorimetric Detection of Hg2+ and Pb2+ Heavy Metal Ions Using Au Nanoparticles. Anal. Bioanal. Chem. 2009, 394, 33–46. DOI: 10.1007/S00216-008-2594-7.
  • Ye, B. F.; Zhao, Y. J.; Cheng, Y.; Li, T. T.; Xie, Z. Y.; Zhao, X. W.; Gu, Z. Z. Colorimetric Photonic Hydrogel Aptasensor for the Screening of Heavy Metal Ions. Nanoscale. 2012, 4, 5998–6003. DOI: 10.1039/C2NR31601C.
  • He, W.; Luo, L.; Liu, Q.; Chen, Z. Colorimetric Sensor Array for Discrimination of Heavy Metal Ions in Aqueous Solution Based on Three Kinds of Thiols as Receptors. Anal. Chem. 2018, 90, 4770–4775. DOI: 10.1021/ACS.ANALCHEM.8B00076/SUPPL_FILE/AC8B00076_SI_001.PDF.
  • Kang, H.; Lin, L.; Rong, M.; Chen, X. A Cross-Reactive Sensor Array for the Fluorescence Qualitative Analysis of Heavy Metal Ions. Talanta. 2014, 129, 296–302. DOI: 10.1016/J.TALANTA.2014.05.054.
  • Chu, Z. Y.; Wang, W. N.; Zhang, C. Y.; Ruan, J.; Chen, B. J.; Xu, H. M.; Qian, H. S. Monitoring and Removal of Trace heavy metal ions via Fluorescence Resonance Energy Transfer Mechanism: In Case of Silver Ions. Chem. Eng. J. 2019, 375, 121927. DOI: 10.1016/j.cej.2019.121927.
  • Hao, C.; Xua, L.; Xing, C.; Kuang, H.; Wang, L.; Xu, C. Oligonucleotide-Based Fluorogenic Sensor for Simultaneous Detection of Heavy Metal Ions. Biosens. Bioelectron. 2012, 36, 174–178. DOI: 10.1016/J.BIOS.2012.04.008.
  • Sekar, A.; Yadav, R.; Basavaraj, N. Fluorescence Quenching Mechanism and the Application of Green Carbon Nanodots in the Detection of Heavy Metal Ions: A Review. New J. Chem. 2021, 45, 2326–2360. DOI: 10.1039/D0NJ04878J.
  • De Acha, N.; Elosúa, C.; Corres, J. M.; Arregui, F. J. Fluorescent Sensors for the Detection of Heavy Metal Ions in Aqueous Media. Sensors. 2019, 19, 599. DOI: 10.3390/s19030599.
  • Al-Saidi, H. M.; Khan, S. Recent Advances in Thiourea Based Colorimetric and Fluorescent Chemosensors for Detection of Anions and Neutral Analytes: A Review. Crit. Rev. Anal. Chem. 2022, 52, 1–17. DOI: 10.1080/10408347.2022.2063017.
  • Nural, Y.; Karasu, E.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Efeoğlu, Ç.; Şahin, E.; Seferoğlu, Z. Synthesis of Novel Acylthioureas Bearing Naphthoquinone Moiety as Dual Sensor for High-Performance Naked-Eye Colorimetric and Fluorescence Detection of CN − and F − Ions and Its Application in Water and Food Samples. Dye. Pigment. 2022, 198, 110006. DOI: 10.1016/j.dyepig.2021.110006.
  • Tan, L.; Chen, Z.; Zhao, Y.; Wei, X.; Li, Y.; Zhang, C.; Wei, X.; Hu, X. Dual Channel Sensor for Detection and Discrimination of Heavy Metal Ions Based on Colorimetric and Fluorescence Response of the AuNPs-DNA Conjugates. Biosens. Bioelectron. 2016, 85, 414–421. DOI: 10.1016/J.BIOS.2016.05.038.
  • Terra, I. A. A.; Mercante, L. A.; Andre, R. S.; Correa, D. S. Fluorescent and Colorimetric Electrospun Nanofibers for Heavy-Metal Sensing. Biosens. 2017, 7, 61. DOI: 10.3390/bios7040061.
  • Ciotta, E.; Prosposito, P.; Tagliatesta, P.; Lorecchio, C.; Stella, L.; Kaciulis, S.; Soltani, P.; Placidi, E.; Pizzoferrato, R. Discriminating between Different Heavy Metal Ions with Fullerene-Derived Nanoparticles. Sensors. 2018, 18, 1496. DOI: 10.3390/s18051496.
  • Zhu, H.; Fan, J.; Wang, B.; Peng, X. Fluorescent, MRI, and Colorimetric Chemical Sensors for the First-Row d-Block Metal Ions. Chem. Soc. Rev. 2015, 44, 4337–4366. DOI: 10.1039/C4CS00285G.
  • Farhi, A.; Firdaus, F.; Saeed, H.; Mujeeb, A.; Shakir, M.; Owais, M. A Quinoline-Based Fluorescent Probe for Selective Detection and Real-Time Monitoring of Copper Ions – A Differential Colorimetric Approach. Photochem. Photobiol. Sci. 2020, 18, 3008–3015. DOI: 10.1039/C9PP00247B.
  • Zhu, G.; Zhang, C. Y. Functional Nucleic Acid-Based Sensors for Heavy Metal Ion Assays. Analyst. 2014, 139, 6326–6342. DOI: 10.1039/C4AN01069H.
  • Liang, Y.; Zhang, H.; Zhang, Y.; Chen, F. Simple Hydrothermal Preparation of Carbon Nanodots and Their Application in Colorimetric and Fluorimetric Detection of Mercury Ions. Anal. Methods. 2015, 7, 7540–7547. DOI: 10.1039/C5AY01301A.
  • Fu, Y.; Feng, Q. C.; Jiang, X. J.; Xu, H.; Li, M.; Zang, S. Q. New Fluorescent Sensor for Cu2+ and S2− in 100% Aqueous Solution Based on Displacement Approach. Dalton Trans. 2014, 43, 5815–5822. DOI: 10.1039/C3DT53281J.
  • Upadhyay, S.; Singh, A.; Sinha, R.; Omer, S.; Negi, K. Colorimetric Chemosensors for d-Metal Ions: A Review in the past, Present and Future Prospect. J. Mol. Struct. 2019, 1193, 89–102. DOI: 10.1016/j.molstruc.2019.05.007.
  • Wu, D.; Sedgwick, A. C.; Gunnlaugsson, T.; Akkaya, E. U.; Yoon, J.; James, T. D. Fluorescent Chemosensors: The past, Present and Future. Chem. Soc. Rev. 2017, 46, 7105–7123. DOI: 10.1039/C7CS00240H.
  • Neupane, L. N.; Oh, E. T.; Park, H. J.; Lee, K. H. Selective and Sensitive Detection of Heavy Metal Ions in 100% Aqueous Solution and Cells with a Fluorescence Chemosensor Based on Peptide Using Aggregation-Induced Emission. Anal. Chem. 2016, 88, 3333–3340. DOI: 10.1021/ACS.ANALCHEM.5B04892/SUPPL_FILE/AC5B04892_SI_001.PDF.
  • Szente, L.; Szemán, J. Cyclodextrins in Analytical Chemistry: Host-Guest Type Molecular Recognition. Anal. Chem. 2013, 85, 8024–8030. DOI: 10.1021/AC400639Y/ASSET/IMAGES/AC400639Y.SOCIAL.JPEG_V03.
  • Liu, Y.; Mettry, M.; Gill, A. D.; Perez, L.; Zhong, W.; Hooley, R. J. Selective Heavy Element Sensing with a Simple Host-Guest Fluorescent Array. Anal. Chem. 2017, 89, 11113–11121. DOI: 10.1021/ACS.ANALCHEM.7B03377/SUPPL_FILE/AC7B03377_SI_001.PDF.
  • Pi, S. W.; Ju, X. J.; Wu, H. G.; Xie, R.; Chu, L. Y. Smart Responsive Microcapsules Capable of Recognizing Heavy Metal Ions. J. Colloid. Interface Sci. 2010, 349, 512–518. DOI: 10.1016/J.JCIS.2010.05.084.
  • Ay, U.; Sarlı, S. E. Investigation by Fluorescence Technique of the Quenching Effect of Co2+ and Mn2+ Transition Metals, on Naphthalene-Methyl-Beta-Cyclodextrin Host-Guest Inclusion Complex. J. Fluoresc. 2018, 28, 1371–1378. 2018 286 DOI: 10.1007/S10895-018-2301-9.
  • Ay, U. Effect of Heavy Metals on Dynamic and Static Quenching of the Fluorescence of the Host-Guest Inclusion Complex Methyl-β-Cyclodextrin by 2,9-Dimethyl-4,7-Diphenyl-1,10-Phenanthroline in Aqueous Media. J Appl Spectrosc. 2021, 88, 838–846. DOI: 10.1007/s10812-021-01248-7.
  • Kim, H. J.; Lee, M. H.; Mutihac, L.; Vicens, J.; Kim, J. S. Host–Guest Sensing by Calixarenes on the Surfaces. Chem. Soc. Rev. 2012, 41, 1173–1190. DOI: 10.1039/C1CS15169J.
  • Manandhar, E.; Wallace, K. J. Host–Guest Chemistry of Pyrene-Based Molecular Receptors. Inorganica Chim. Acta. 2012, 381, 15–43. DOI: 10.1016/j.ica.2011.09.021.
  • Gao, L.; Jian, Q. W.; Huang, L.; Xiao, X. F.; Jian, H. Z.; Wang, Y.; Zhi, G. Z. Novel Inorganic-Organic Hybrid Fluorescence Chemosensor Derived from SBA-15 for Copper Cation. Inorg Chem. 2007, 46, 10287–10293. DOI: 10.1021/IC7008732/ASSET/IMAGES/IC7008732.SOCIAL.JPEG_V03.
  • Liu, C.; Yan, B. A Novel Photofunctional Hybrid Material of Pyrene Functionalized Metal-Organic Framework with Conformation Change for Fluorescence Sensing of Cu2+. Sensor. Actuator. B Chem. 2016, 235, 541–546. DOI: 10.1016/j.snb.2016.05.127.
  • Chatterjee, S.; Li, X. S.; Liang, F.; Yang, Y. W. Design of Multifunctional Fluorescent Hybrid Materials Based on SiO2 Materials and Core–Shell Fe3O4@SiO2 Nanoparticles for Metal Ion Sensing. Small. 2019, 15, 1904569. DOI: 10.1002/smll.201904569.
  • Jung, J. H.; Lee, J. H.; Shinkai, S. Functionalized Magnetic Nanoparticles as Chemosensors and Adsorbents for Toxic Metal Ions in Environmental and Biological Fields. Chem. Soc. Rev. 2011, 40, 4464–4474. DOI: 10.1039/C1CS15051K.
  • Zhang, G.; Yang, G.; Wang, S.; Chen, Q.; Ma, J. S. A Highly Fluorescent Anthracene-Containing Hybrid Material Exhibiting Tunable Blue–Green Emission Based on the Formation of an Unusual “T-Shaped” Excimer. Chemistry. 2007, 13, 3630–3635. DOI: 10.1002/CHEM.200600514.
  • Hu, C. C.; Gao, Q.; Liu, S.; Chang, L. L.; Xia, K. S.; Han, B.; Zhou, C. G. Crosslinked Poly(Ionic Liquid) Anchored with Organic Probe as a New Promising Platform for Organic Solvent-Free Recognition, Quantification, and Selective Removal of Heavy Metal Ion. Chem. Eng. J. 2018, 346, 458–465. DOI: 10.1016/j.cej.2018.03.185.
  • Du, Y.; Liu, H. Silsesquioxane-Based Hexaphenylsilole-Linked Hybrid Porous Polymer as an Effective Fluorescent Chemosensor for Metal Ions. ChemistrySelect. 2018, 3, 1667–1673. DOI: 10.1002/slct.201703133.
  • Nural, Y.; Kilincarslan, R.; Dondas, H. A.; Cetinkaya, B.; Serin, M. S.; Grigg, R.; Ince, T.; Kilner, C. Synthesis of Ni(II), Pd(II) and Cu(II) Metal Complexes of Novel Highly Functionalized aroylaminocarbo-N-Thioyl Pyrrolidines and Their Activity against Fungi and Yeast. Polyhedron. 2009, 28, 2847–2854. DOI: 10.1016/j.poly.2009.06.028.
  • Sahu, M.; Kumar Manna, A.; Rout, K.; Mondal, J.; Patra, G. K. A Highly Selective Thiosemicarbazone Based Schiff Base Chemosensor for Colorimetric Detection of Cu2+ and Ag + Ions and Turn-on Fluorometric Detection of Ag + Ions. Inorganic. Chim. Acta. 2020, 508, 119633. DOI: 10.1016/j.ica.2020.119633.
  • Rout, K.; Manna, A. K.; Sahu, M.; Mondal, J.; Singh, S. K.; Patra, G. K. Triazole-Based Novel Bis Schiff Base Colorimetric and Fluorescent Turn-on Dual Chemosensor for Cu2+ and Pb2+: Application to Living Cell Imaging and Molecular Logic Gates. RSC Adv. 2019, 9, 25919–25931. DOI: 10.1039/c9ra03341f.
  • Kaya, S. A New Indole Substituted Biphenyldiamine Derivative Schiff Base: A New Sensor Application for the Selective Detection of Hg(II) Ions. Russ J Coord Chem. 2021, 47, 903–908. DOI: 10.1134/S1070328421120071.
  • Manna, A. K.; Mondal, J.; Chandra, R.; Rout, K.; Patra, G. K. A Thio-Urea Based Chromogenic and Fluorogenic Chemosensor for Expeditious Detection of Cu2+, Hg2+ and Ag + Ions in Aqueous Medium. J. Photochem. Photobiol. A Chem. 2018, 356, 477–488. DOI: 10.1016/j.jphotochem.2018.01.017.
  • Chen, Z. E.; Zhang, H.; Iqbal, Z. A New Thiosemicarbazone Fluorescent Probe Based on 9,9′-Bianthracene for Hg2+ and Ag+. Spectrochim. Acta A Mol Biomol Spectrosc. 2019, 215, 34–40. DOI: 10.1016/J.SAA.2019.02.036.
  • Wang, L.; Zhang, C.; He, H.; Zhu, H.; Guo, W.; Zhou, S.; Wang, S.; Zhao, J. R.; Zhang, J. Cellulose-Based Colorimetric Sensor with N, S Sites for Ag + Detection. Int. J. Biol. Macromol. 2020, 163, 593–602. DOI: 10.1016/j.ijbiomac.2020.07.018.
  • Ghosh, K.; Panja, S.; Sarkar, T. Rhodamine-Linked Pyridyl Thiourea as a Receptor for Selective Recognition of F–, Al3+ and Ag + under Different Conditions. Supramol. Chem. 2015, 27, 490–500. DOI: 10.1080/10610278.2014.998673.
  • Ye, F.; Liang, X. M.; Xu, K. X.; Pang, X. X.; Chai, Q.; Fu, Y. A Novel Dithiourea-Appended Naphthalimide “on-off” Fluorescent Probe for Detecting Hg2+ and Ag + and Its Application in Cell Imaging. Talanta. 2019, 200, 494–502. DOI: 10.1016/J.TALANTA.2019.03.076.
  • Seo, Y.; Park, S.; Kim, G.; Lee, M.; Kim, C. A Naphthyl Thiourea-Based Effective Chemosensor for Fluorescence Detection of Ag + and Zn2+. Luminescence. 2021, 36, 1725–1732. DOI: 10.1002/BIO.4114.
  • Nandre, J. P.; Patil, S. R.; Sahoo, S. K.; Pradeep, C. P.; Churakov, A.; Yu, F.; Chen, L.; Redshaw, C.; Patil, A. A.; Patil, U. D. A Chemosensor for Micro- to Nano-Molar Detection of Ag + and Hg2+ Ions in Pure Aqueous Media and Its Applications in Cell Imaging. Dalton Trans. 2017, 46, 14201–14209. DOI: 10.1039/C7DT02524F.
  • Bhorge, Y. R.; Chou, T.-L.; Chen, Y.-Z.; Yen, Y.-P. New Coumarin-Based Dual Chromogenic Probe: Naked Eye Detection of Copper and Silver Ions. Sens. Actuators B Chem. 2015, 220, 1139–1144. DOI: 10.1016/j.snb.2015.06.059.
  • Tümay, S. O. A Novel Selective “Turn-On” Fluorescent Chemosensor Based on Thiophene Appended Cyclotriphosphazene Schiff Base for Detection of Ag + Ions. ChemistrySelect. 2021, 6, 10561–10572. DOI: 10.1002/slct.202102052.
  • Hammud, H. H.; Shazly, S. E.; Sonji, G.; Sonji, N.; Bouhadir, K. H. Thiophene Aldehyde-Diamino Uracil Schiff Base: A Novel Fluorescent Probe for Detection and Quantification of Cupric, Silver and Ferric Ions. Spectrochim Acta A. Mol. Biomol. Spectrosc. 2015, 150, 94–103. DOI: 10.1016/J.SAA.2015.05.038.
  • Lin, Q.; Yang, Q.; Sun, B.; Wei, T.; Zhang, Y. A Novel Highly Selective “Turn-On” Fluorescence Sensor for Silver Ions Based on Schiff Base. Chin. J. Chem. 2014, 32, 1255–1258. DOI: 10.1002/cjoc.201400601.
  • Zhang, S.; Wu, X.; Niu, Q.; Guo, Z.; Li, T.; Liu, H. Highly Selective and Sensitive Colorimetric and Fluorescent Chemosensor for Rapid Detection of Ag+, Cu2+ and Hg2+ Based on a Simple Schiff Base. J. Fluoresc. 2016, 27, 729–737. DOI: 10.1007/s10895-016-2005-y.
  • Anand, T.; Sivaraman, G.; Anandh, P.; Chellappa, D.; Govindarajan, S. Colorimetric and Turn-on Fluorescence Detection of Ag(I) ion. Tetrahedron. Lett. 2014, 55, 671–675. DOI: 10.1016/j.tetlet.2013.11.104.
  • Bhuvanesh, N.; Suresh, S.; Prabhu, J.; Kannan, K.; Rajesh Kannan, V.; Nandhakumar, R. Ratiometric Fluorescent Chemosensor for Silver Ion and Its Bacterial Cell Imaging. Opt. Mater. (Amst). 2018, 82, 123–129. DOI: 10.1016/j.optmat.2018.05.053.
  • Prabhu, J.; Velmurugan, K.; Zhang, Q.; Radhakrishnan, S.; Tang, L.; Nandhakumar, R. Symmetric Fluorescent Probes for the Selective Recognition of Ag-Ion via Restricted CN Isomerization and on-Site Visual Sensing Applications. J. Photochem. Photobiol. A Chem. 2017, 337, 6–18. DOI: 10.1016/j.jphotochem.2017.01.006.
  • Chen, Z.; Zhou, H.; Gu, W.; Liu, T.; Xie, Z.; Yang, L.; Ma, L.-J. A Medium-Controlled Fluorescent Enhancement Probe for Ag + and Cu2+ Derived from Pyrene-Containing Schiff Base. J. Photochem. Photobiol A., 2019, 379, 5–10. https://www.sciencedirect.com/science/article/pii/S1010603019304915. (accessed March 13, 2021). DOI: 10.1016/j.jphotochem.2019.05.007.
  • Xiang, G.; Cui, W.; Lin, S.; Wang, L.; Meier, H.; Li, L.; Cao, D. A Conjugated Polymer with Ethyl 2-(2-(Pyridin-2-yl)-1H-Benzo[d]Imidazol-1-yl) Acetate Units as a Novel Fluorescent Chemosensor for Silver(I) detection. Sens. Actuat. B. Chem. 2013, 186, 741–749. DOI: 10.1016/j.snb.2013.06.061.
  • Zhang, Y.; Wang, D.; Sun, C.; Feng, H.; Zhao, D.; Bi, Y. A Simple 2,6-Diphenylpyridine-Based Fluorescence “Turn-on” Chemosensor for Ag + with a High Luminescence Quantum Yield. Dye. Pigment. 2017, 141, 202–208. DOI: 10.1016/j.dyepig.2017.02.028.
  • Cui, W.; Wang, L.; Xiang, G.; Zhou, L.; An, X.; Cao, D. A Colorimetric and Fluorescence “Turn-off” Chemosensor for the Detection of Silver Ion Based on a Conjugated Polymer Containing 2,3-di(Pyridin-2-yl)Quinoxaline. Sens. Actuat. B Chem. 2015, 207, 281–290. DOI: 10.1016/j.snb.2014.10.072.
  • Wang, F.; Nandhakumar, R.; Moon, J. H.; Kim, K. M.; Lee, J. Y.; Yoon, J. Ratiometric Fluorescent Chemosensor for Silver Ion at Physiological pH. Inorg Chem. 2011, 50, 2240–2245. DOI: 10.1021/IC1018967/SUPPL_FILE/IC1018967_SI_001.PDF.
  • Velmurugan, K.; Raman, A.; Easwaramoorthi, S.; Nandhakumar, R. Pyrene Pyridine-Conjugate as Ag Selective Fluorescent Chemosensor. RSC Adv. 2014, 4, 35284–35289. DOI: 10.1039/C4RA04001E.
  • Tharmaraj, V.; Devi, S.; Pitchumani, K. An Intramolecular Charge Transfer (ICT) Based Chemosensor for Silver Ion Using 4-methoxy-N-((Thiophen-2-yl)Methyl)Benzenamine. Analyst. 2012, 137, 5320–5324. DOI: 10.1039/C2AN35721F.
  • Velmurugan, K.; Suresh, S.; Santhoshkumar, S.; Saranya, M.; Nandhakumar, R. A Simple Chalcone-Based Ratiometric Chemosensor for Silver Ion. Luminescence. 2016, 31, 722–727. DOI: 10.1002/BIO.3016.
  • Bhuvanesh, N.; Suresh, S.; Kumar, P. R.; Mothi, E. M.; Kannan, K.; Kannan, V. R.; Nandhakumar, R. Small Molecule “Turn on” Fluorescent Probe for Silver Ion and Application to Bioimaging. J. Photochem. Photobiol. A Chem. 2018, 360, 6–12. DOI: 10.1016/j.jphotochem.2018.04.027.
  • Dongare, P. R.; Gore, A. H.; Kolekar, G. B.; Ajalkar, B. D. A Phenazine Based Colorimetric and Fluorescent Chemosensor for Sequential Detection of Ag + and I − in Aqueous Media. Luminescence. 2020, 35, 231–242. DOI: 10.1002/BIO.3718.
  • Tang, H. Y.; Gao, Y.; Li, B.; Li, C. W.; Guo, Y. Reaction-Based Colorimetric and Ratiometric Fluorescent Probe for Highly Selective Detection of Silver Ions. Sensors Actuators B Chem. 2018, 270, 562–569. DOI: 10.1016/j.snb.2018.05.064.
  • Kumar, A.; Mondal, S.; Kayshap, K. S.; Hira, S. K.; Manna, P. P.; Dehaen, W.; Dey, S. Water Switched Aggregation/Disaggregation Strategies of a Coumarin–Naphthalene Conjugated Sensor and Its Selectivity towards Cu2+ and Ag + Ions along with Cell Imaging Studies on Human Osteosarcoma Cells (U-2 OS). New J. Chem. 2018, 42, 10983–10988. DOI: 10.1039/C8NJ01631C.
  • Jiang, X.; Yang, Y.; Li, H.; Qi, X.; Zhou, X.; Deng, M.; Lü, M.; Wu, J.; Liang, S. A Water-Soluble Fluorescent Probe for the Selective Sensing of Ag + and Its Application in Imaging of Living Cells and Nematodes. J Fluoresc. 2020, 30, 121–129. DOI: 10.1007/S10895-019-02477-Y.
  • Wang, N. J.; Sun, C. M.; Chung, W. S. A Highly Selective Fluorescent Chemosensor for Ag + Based on Calix[4]Arene with Lower-Rim Proximal Triazolylpyrenes. Sensors Actuators B Chem. 2012, 171-172, 984–993. DOI: 10.1016/j.snb.2012.06.014.
  • Ni, X. L.; Zeng, X.; Redshaw, C.; Yamato, T. Synthesis and Evaluation of a Novel Pyrenyl-Appended Triazole-Based Thiacalix[4]Arene as a Fluorescent Sensor for Ag + Ion. Tetrahedron. 2011, 67, 3248–3253. DOI: 10.1016/j.tet.2011.03.008.
  • Mi, Z.; Chen, Y.; Chen, X.; Yan, L.; Gu, Q.; Zhang, H.; Chen, C.; Zhang, Y. Synthesis of Highly Sensitive Fluorescent Probe Based on Tetrasubstituted Imidazole and Its Application for Selective Detection of Ag + Ion in Aqueous Media. Chem. Res. Chin. Univ. 2018, 34, 369–374. DOI: 10.1007/s40242-018-7426-5.
  • Asaithambi, G.; Periasamy, V. Phenanthrene-Imidazole-Based Fluorescent Sensor for Selective Detection of Ag + and F − Ions: real Sample Application and Live Cell Imaging. Res Chem Intermed. 2018, 45, 1295–1308. DOI: 10.1007/s11164-018-3678-4.
  • Chen, C.; Liu, H.; Zhang, B.; Wang, Y.; Cai, K.; Tan, Y.; Gao, C.; Liu, H.; Tan, C.; Jiang, Y. A Simple Benzimidazole Quinoline-Conjugate Fluorescent Chemosensor for Highly Selective Detection of Ag+.Tetrahedron. 2016, 72, 3980–3985. DOI: 10.1016/j.tet.2016.05.020.
  • Wu, Y. C.; Jiang, K.; Luo, S. H.; Cao, L.; Wu, H. Q.; Wang, Z. Y. Novel Dual-Functional Fluorescent Sensors Based on Bis(5,6-Dimethylbenzimidazole) Derivatives for Distinguishing of Ag + and Fe3+ in Semi-Aqueous Medium. Spectrochim Acta A Mol Biomol Spectrosc. 2019, 206, 632–641. DOI: 10.1016/J.SAA.2018.05.069.
  • Velmurugan, K.; Thamilselvan, A.; Antony, R.; Kannan, V. R.; Tang, L.; Nandhakumar, R. Imidazoloquinoline Bearing Thiol Probe as Fluorescent Electrochemical Sensing of Ag and Relay Recognition of Proline. J. Photochem. Photobiol. A Chem. 2017, 333, 130–141. DOI: 10.1016/j.jphotochem.2016.10.025.
  • Liu, C.; Huang, S.; Yao, H.; He, S.; Lu, Y.; Zhao, L.; Zeng, X. Preparation of Fluorescein-Based Chemosensors and Their Sensing Behaviors toward Silver Ions. RSC Adv. 2014, 4, 16109–16114. DOI: 10.1039/C3RA47392A.
  • Swamy, K. M. K.; Kim, H. N.; Soh, J. H.; Kim, Y.; Kim, S. J.; Yoon, J. Manipulation of Fluorescent and Colorimetric Changes of Fluorescein Derivatives and Applications for Sensing Silver Ions. Chem. Commun. 2009, 10, 1234–1236. DOI: 10.1039/b819538b.
  • Wei, G.; Jiang, Y.; Wang, F. A Novel AIEE Polymer Sensor for Detection of Hg2+ and Ag + in Aqueous Solution. J. Photochem. Photobiol. A Chem. 2018, 358, 38–43. DOI: 10.1016/j.jphotochem.2018.03.006.
  • Li, N. N.; Bi, C. F.; Zhang, X.; Xu, C. G.; Bin Fan, C.; Gao, W. S.; Zong, Z. A.; Zuo, S. S.; Niu, C. F.; Fan, Y. H. A Bifunctional Probe Based on Naphthalene Derivative for Absorbance-Ratiometic Detection of Ag + and Fluorescence “Turn-on” Sensing of Zn2+ and Its Practical Application in Water Samples, Walnut and Living Cells. J. Photochem. Photobiol. A Chem. 2020, 390, 112299. DOI: 10.1016/j.jphotochem.2019.112299.
  • Li, C. Y.; Kong, X. F.; Li, Y. F.; Zou, C. X.; Liu, D.; Zhu, W. G. Ratiometric and Colorimetric Fluorescent Chemosensor for Ag + Based on Tricarbocyanine. Dye. Pigment. 2013, 99, 903–907. DOI: 10.1016/j.dyepig.2013.07.032.
  • Zeng, X.; Li, X.; Sun, W. Highly Selective and Sensitive Colorimetric Chemosensor Based on Tricarboyanine for Detection of Ag + in Industrial Wastewater. J. Leather Sci. Eng. 2020, 2, 1–11. DOI: 10.1186/S42825-020-00031-2.
  • David, C. I.; Prabakaran, G.; Sundaram, K.; Ravi, S.; devi, D. P.; Abiram, A.; Nandhakumar, R. Rhodanine-Based Fluorometric Sequential Monitoring of Silver (I) and Iodide Ions: Experiment, DFT Calculation and Multifarious Applications. J. Hazard Mater. 2021, 419, 126449. DOI: 10.1016/J.JHAZMAT.2021.126449.
  • Christopher Leslee, D. B.; Karuppannan, S.; Karmegam, M. V.; Gandhi, S.; Subramanian, S. A Fluorescent Turn-On Carbazole-Rhodanine Based Sensor for Detection of Ag + Ions and Application in Ag + Ions Imaging in Cancer Cells. J Fluoresc. 2019, 29, 75–89. DOI: 10.1007/S10895-018-2312-6.
  • Jiang, Y.; Kong, W.; Shen, Y.; Wang, B. Two Fluorescence Turn-on Chemosensors Based on Pyrrolo[2,1-a]Isoquinoline for Detection of Ag + in Aqueous Solution. Tetrahedron. 2015, 71, 5584–5588. DOI: 10.1016/j.tet.2015.06.055.
  • Affrose, A.; Parveen, S. D. S.; Kumar, B. S.; Pitchumani, K. Selective Sensing of Silver Ion Using Berberine, a Naturally Occurring Plant Alkaloid. Sensors Actuators B Chem. 2015, 206, 170–175. DOI: 10.1016/j.snb.2014.09.042.
  • Li, C. Y.; Xu, F.; Li, Y. F. A Fluorescent Chemosensor for Silver Ions Based on Porphyrin Compound with High Selectivity. Spectrochim Acta A Mol Biomol Spectrosc. 2010, 76, 197–201. DOI: 10.1016/J.SAA.2010.03.012.
  • Krishnaveni, K.; Iniya, M.; Siva, A.; Vidhyalakshmi, N.; Sasikumar, S.; Pandian Ramesh, U. K.; Murugesan, S. Naphthyl Hydrazone Anchored with Nitrosalicyl Moiety as Fluorogenic and Chromogenic Receptor for Heavy Metals (Ag+, Hg2+) and Biologically Important F − Ion and Its Live Cell Imaging Applications in HeLa Cells and Zebrafish Embryos. J. Mol. Struct. 2020, 1217, 128446. DOI: 10.1016/j.molstruc.2020.128446.
  • Liu, S.; Tian, J.; Wang, L.; Sun, X. Highly Sensitive and Selective Colorimetric Detection of Ag(I) ion Using 3,3′,5,5′,-Tetramethylbenzidine (TMB) as an Indicator. Sensors Actuators B Chem. 2012, 165, 44–47. DOI: 10.1016/j.snb.2012.02.002.
  • Liu, J.; Wang, S.; Wang, X. A Novel Ratiometric Fluorescent Probe for Ag + Based on Arginine-Naphthalene Imide. J. Mater. Eng Perform. 2020, 29, 5126–5131. DOI: 10.1007/s11665-020-05006-2.
  • Maurya, N.; Bhardwaj, S.; Singh, A. K. Selective Colorimetric and Fluorescence ‘Turn-On’ Sensor for Ag + and in-Situ Sensing of CN− (Off–On–Off) via Displacement Approach. Mater Sci Eng C Mater Biol Appl. 2017, 74, 55–61. DOI: 10.1016/J.MSEC.2016.12.131.
  • Li, W. T.; Wu, G. Y.; Qu, W. J.; Li, Q.; Lou, J. C.; Lin, Q.; Yao, H.; Zhang, Y. M.; Wei, T. B. A Colorimetric and Reversible Fluorescent Chemosensor for Ag + in Aqueous Solution and Its Application in IMPLICATION Logic Gate. Sens. Actuat. B Chem. 2017, 239, 671–678. DOI: 10.1016/j.snb.2016.08.016.
  • Ghosh, P.; Dey, S.; Ara, M.; Karim, K.; Islam, A. N. A Review on Synthesis and Versatile Applications of Some Selected Schiff Bases with Their Transition Metal Complexes. Egypt. J. Chem. n.d, 0, 0–0. DOI: 10.21608/ejchem.2019.13741.1852.
  • Parveen, S. Recent Advances in Anticancer Ruthenium Schiff Base Complexes. Appl. Organomet. Chem. 2020, 34, e5687. DOI: 10.1002/aoc.5687.
  • Law, C. S. W.; Yeong, K. Y. Benzimidazoles in Drug Discovery: A Patent Review. ChemMedChem. 2021, 16, 1861–1877. DOI: 10.1002/CMDC.202100004.
  • Alrooqi, M.; Khan, S.; Alhumaydhi, F. A.; Asiri, S. A.; Alshamrani, M.; Mashraqi, M. M.; Alzamami, A.; Alshahrani, A. M.; Aldahish, A. A. A Therapeutic Journey of Pyridine-Based Heterocyclic Compounds as Potent Anticancer Agents: A Review (from 2017 to 2021). Anticancer. Agents Med. Chem. 2022, 22, 2775–2787. DOI: 10.2174/1871520622666220324102849.
  • Mohammad Abu-Taweel, G.; Ibrahim, M. M.; Khan, S.; Al-Saidi, H. M.; Alshamrani, M.; Alhumaydhi, F. A.; Alharthi, S. S. Medicinal Importance and Chemosensing Applications of Pyridine Derivatives: A Review. Crit. Rev. Anal. Chem. 2022, 52, 1–18. DOI: 10.1080/10408347.2022.2089839.
  • Kralj, M.; Tušek-Božić, L.; Frkanec, L. Biomedical Potentials of Crown Ethers: Prospective Antitumor Agents. ChemMedChem. 2008, 3, 1478–1492. DOI: 10.1002/CMDC.200800118.
  • G, A. C.; Gondru, R.; Li, Y.; Banothu, J. Coumarin–Benzimidazole Hybrids: A Review of Developments in Medicinal Chemistry. Eur J Med Chem. 2022, 227, 113921. DOI: 10.1016/J.EJMECH.2021.113921.
  • Wang, X.; Yan, M.; Wang, Q.; Wang, H.; Wang, Z.; Zhao, J.; Li, J.; Zhang, Z. In Vitro DNA-Binding, anti-Oxidant and Anticancer Activity of Indole-2-Carboxylic Acid Dinuclear Copper(II) Complexes. Mol. 2017, 22, 171. DOI: 10.3390/molecules22010171.
  • Keri, R. S.; Patil, M. R.; Patil, S. A.; Budagumpi, S. A Comprehensive Review in Current Developments of Benzothiazole-Based Molecules in Medicinal Chemistry. Eur J Med Chem. 2015, 89, 207–251. DOI: 10.1016/J.EJMECH.2014.10.059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.