124
Views
16
CrossRef citations to date
0
Altmetric
Articles

In silico estimation of basic activity-relevant parameters for a set of drug absorption promoters

, , &
Pages 427-449 | Received 26 Apr 2017, Accepted 03 May 2017, Published online: 02 Jun 2017
 

Abstract

Finding a balance between a desired drug’s potency and its physicochemical properties that are important for its molecule pharmacokinetic or pharmacodynamics profile is still a challenging issue in rational drug discovery. Quantitative assessment of the lipophilic characteristics of potential drug molecules is indispensable for efficient development of Absorption, Distribution, Metabolism, Excretion, Toxicity-tailored structure–activity models; therefore reliable procedures for deriving log P from molecular structure are desirable. In the current work a range of various software log P predictors for estimation of the numerical lipophilic values for a set of cholic acid derivatives were employed and subsequently cross-compared with the experimental parameters. Thus, the empirical lipophilicity (RM) was compared with the corresponding log P characteristics calculated using alternative methods for deducing the lipophilic features. The mean values of the selected molecular descriptors that were averaged over the chosen calculation methods (consensus clog P) were subsequently correlated with the RM parameter. As an additional experiment, the iterative variable elimination partial least squares (IVE-PLS) methodology for an ensemble of descriptors retrieved from Dragon 6.0 software was applied for a set of drug transporters. To investigate the variations within the ensemble of cholic acid derivatives principal component analysis (PCA) and self-organizing neural network (SOM) procedures were used to visualize the major differences in the performance of drug promoters with respect to their lipophilic profile.

Acknowledgements

The authors thank Professor Johann Gasteiger for facilitating access to the SONNIA program. We would like to acknowledge OpenEye and OpenBabel Scientific Software for the free academic license. Dr Andrzej Bak thanks the Foundation for Polish Science for his individual grant. This study was also partially supported by the Slovak Research and Development Agency (Grant No. APVV-0516-12).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.