124
Views
16
CrossRef citations to date
0
Altmetric
Articles

In silico estimation of basic activity-relevant parameters for a set of drug absorption promoters

, , &
Pages 427-449 | Received 26 Apr 2017, Accepted 03 May 2017, Published online: 02 Jun 2017

References

  • T.I. Oprea, Property distribution of drug-related chemical databases, J. Comput. Aided Mol. Des. 14 (2000), pp. 251–264.
  • M.M. Hann and G.M. Keserü, Finding the sweet spot: The role of nature and nurture in medicinal chemistry, Nat. Rev. Drug Discov. 11 (2012), pp. 355–365.
  • O. Ursu and T.I. Oprea, Model-free drug-likeness from fragments, J. Chem. Inf. Model. 50 (2010), pp. 1387–1394.
  • S. Tian, J. Wang, Y. Li, D. Li, L. Xu, and T. Hou, The application of in silico drug-likeness predictions in pharmaceutical research, Adv. Drug Deliv. Rev. 86 (2015), pp. 2–10.
  • M. Shen, S. Tian, Y. Li, Q. Li, X. Xu, J. Wang, and T. Hou, Drug-likeness analysis of traditional Chinese medicines: Prediction of drug-likeness using machine learning approaches, Mol. Pharm. 9 (2012), pp. 2875–2886.
  • A.K. Ghose, T. Herbertz, J.M. Salvino, and J.P. Mallamo, Knowledge-based chemoinformatic approaches to drug discovery, Drug Discov. Today 11 (2006), pp. 1107–1114.
  • D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, and K.D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem. 45 (2002), pp. 2615–2623.
  • H. van de Waterbeemd and E. Gifford, ADMET in silico modeling: Towards prediction paradise?, Nat. Rev. Drug Discov. 2 (2003), pp. 192–204.
  • Y. Fukunishi and H. Nakamura, Definition of drug-likeness for compound affinity, J. Chem. Inf. Model. 51 (2011), pp. 1012–1016.
  • M. Fialkowski, K.J.M. Bishop, V.A. Chubukov, C.J. Campbell, and B.A. Grzybowski, Architecture and evolution of organic chemistry, Angew. Chem. Int. Ed. 44 (2005), pp. 7263–7269.
  • J. Polanski, A. Kurczyk, A. Bak, and R. Musiol, Privileged structures – Dream or reality: Preferential organization of azanaphthalene scaffold, Curr. Med. Chem. 19 (2012), pp. 1921–1945.
  • J.A. Arnott and S.L. Planey, The influence of lipophilicity in drug discovery and design, Expert Opin. Drug Discov. 7 (2012), pp. 863–875.
  • D. Li, L. Chen, Y. Li, S. Tian, H. Sun, and T. Hou, ADMET evaluation in drug discovery. Development of in silico prediction models for P-glycoprotein substrates, Mol. Pharm. 11 (2014), pp. 716–726.
  • R.G. Efremov, A.O. Chugunov, T.V. Pyrkov, J.P. Priestle, A.S. Arseniev, and E. Jacoby, Molecular lipophilicity in protein modeling and drug design, Curr. Med. Chem. 14 (2007), pp. 393–415.
  • L. Chen, Y. Li, H. Yu, L. Zhang, and T. Hou, Computational models for predicting substrates or inhibitors of P-glycoprotein, Drug Discov. Today 17 (2012), pp. 343–351.
  • A. Daina, O. Michielin, and V. Zoete, iLogP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach, J. Chem. Inf. Model. 54 (2014), pp. 3284–3301.
  • J. Zhu, J. Wang, H. Yu, Y. Li, and T. Hou, Recent developments of in silico predictions of oral bioavailability, Comb. Chem. High Throughput Screen. 14 (2011), pp. 362–374.
  • J. Polanski, Chemoinformatics, in Comprehensive Chemometrics, J. Polanski, S.D. Brown, R. Tauler, and B. Walczak, eds., Elsevier, Amsterdam, 2009, pp. 459–506.
  • R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH Verlag GmbH, Weinheim, 2000.
  • R. Mannhold and R.F. Rekker, The hydrophobic fragmental constant approach for calculating logP in octanol/water and aliphatic hydrocarbon/water systems, Perspect. Drug Discov. 18 (2000), pp. 1–18.
  • R. Mannhold, G.I. Poda, C. Ostermann, and I.V. Tetko, Calculation of molecular lipophilicity: State-of-the-art and comparison of logP methods on more than 96,000 compounds, J. Pharm. Sci. 3 (2009), pp. 861–864.
  • E. Benfenati, G. Gini, N. Piclin, A. Roncaglioni, and M.R. Vari, Predicting logP of pesticides using different software, Chemosphere 53 (2003), pp. 1155–1164.
  • I.V. Tetko, Computing chemistry on the web, Drug Discov. Today 10 (2005), pp. 1497–1500.
  • H. Kubinyi, QSAR: Hansch Analysis and Related Approaches, Wiley-VCH Verlag GmbH, Weinheim, 1993, pp. 61.
  • M. Milewski and A.L. Stinchcomb, Estimation of maximum transdermal flux of nonionized xenobiotics from basic physicochemical determinants, Mol. Pharm. 9 (2012), pp. 2111–2120.
  • T. Gonec, J. Kos, I. Zadrazilova, M. Pesko, S. Keltosova, J. Tengler, P. Bobal, P. Kollar, A. Cizek, K. Kralova, and J. Jampilek, Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides, Bioorg. Med. Chem. 21 (2013), pp. 6531–6541.
  • T. Gonec, J. Kos, E. Nevin, R. Govender, M. Pesko, J. Tengler, I. Kushkevych, V. Stastna, M. Oravec, P. Kollar, J. O'Mahony, K. Kralova, A. Coffey, and J. Jampilek, Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides, Molecules 19 (2014), pp. 10386–10409.
  • P. Sharma, H.P.S. Chawla, and R. Panchagnula, The role of sorption promoters in increasing the bioavailability of drugs in oral preparations, Drugs Fut. 24 (1999), pp. 1221–1240.
  • J. Jampilek and K. Brychtova, Azone analogues: Classification, design, and transdermal penetration principles, Med. Res. Rev. 32 (2012), pp. 907–947.
  • L. Mrozek, L. Dvorakova, Z. Mandelova, L. Rarova, A. Rezacova, L. Placek, R. Opatrilová, J. Dohnal, O. Paleta, V. Kral, P. Drasar, and J. Jampilek, Investigation of new acyloxy derivatives of cholic acid and their esters as drug absorption modifiers, Steroids 76 (2011), pp. 1082–1097.
  • L. Mrozek, L. Coufalova, L. Rarova, L. Placek, R. Opatrilova, J. Dohnal, K. Kralova, O. Paleta, V. Kral, P. Drasar, and J. Jampilek, New polyfluorothiopropanoyloxy derivatives of 5β-cholan-24-oic acid designed as drug absorption modifiers, Steroids 78 (2013), pp. 832–844.
  • L. Peng, F. Mo, and Q. Zhang, Cholate-based synthesis of size-tunable cage compounds, J. Org. Chem. 80 (2015), pp. 1221–1228.
  • L. Coufalova, L. Mrozek, L. Rarova, L. Placek, R. Opatrilova, J. Dohnal, K. Kralova, O. Paleta, V. Kral, P. Drasar, and J. Jampilek, New propanoyloxy derivatives of 5β-cholan-24-oic acid as drug absorption modifiers, Steroids 78 (2013), pp. 435–453.
  • D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, and K.D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem. 45 (2002), pp. 2615–2623.
  • M.M. Hann, Molecular obesity, potency and other addictions in drug discovery, Med. Chem. Commun. 2 (2011), pp. 349–355.
  • A. Pyka, M. Babuska, and J. Sliwiok, Use of liquid chromatography and theoretical computational methods to compare the lipophilicity of selected cortisone derivatives, J. Planar Chromat. 19 (2006), pp. 432–437.
  • T. Slawik and B. Paw, RPTLC determination of the lipophilicity of 1,2-benzisothiazol-3(2H)-one derivatives substituted in the heterocyclic ring, J. Planar Chromat. 16 (2003), pp. 442–446.
  • I.V. Tetko and T.I. Oprea, Early ADME/T predictions: Toy or tool?, in Chemoinformatics Approaches to Virtual Screening, A. Varnek and A. Tropsha, eds., Royal Society of Chemistry, Cambridge, 2008.
  • milogP, Molinspiration, Slovak Republic; software available at http://www.molinspiration.com/.
  • AlogPS 2.1, Virtual Computational Chemistry Laboratory, Neuherberg, Germany; software available at http://www.vcclab.org/lab/alogps/.
  • ClogP, Certara, Princeton, NJ; software available at https://www.certara.com/ (accessed April 2016)
  • HyperChem logP, Hypercube, Inc., Gainesville, FL; software available at http://www.hyper.com/.
  • MarvinSketch logP, ChemAxon, Budapest, Hungary; software available at https://www.chemaxon.com/products/marvin/marvinsketch/.
  • ChemSketch logP, ACD/Labs, Toronto, Canada; software available at http://www.acdlabs.com/resources/freeware/chemsketch/.
  • Dragon AlogP, MlogP, Talete SRL, Milan, Italy; software available at http://www.talete.mi.it/products/dragon_description.htm.
  • OSIRIS logP, Actelion Pharmaceutical Ltd., Allschwil Switzerland; software available at http://www.organic-chemistry.org/prog/, (accessed April 2016).
  • M. Daszykowski and B. Walczak, Methods for the exploratory analysis of two-dimensional chromatographic signals, Talanta 83 (2011), pp. 1088–1097.
  • A. Smolinski, L. Drobek, V. Dombek, and A. Bak, Modeling of experimental data on trace elements and organic compounds content in industrial waste dumps, Chemosphere 162 (2016), pp. 189–198.
  • A. Bak, T. Magdziarz, A. Kurczyk, and J. Polanski, Mapping fragmental drug-likeness in the MoStBioDat environment: Intramolecular hydrogen bonding motifs in β-ketoenols, Comb. Chem. High Throughput Screen. 14 (2011), pp. 560–569.
  • A. Bak, T. Magdziarz, and J. Polanski, Pharmacophore-based database mining for probing fragmental drug-likeness of diketo acid analogues, SAR QSAR Environ. Res. 23 (2012), pp. 185–204.
  • D.T. Stanton, QSAR and QSPR model interpretation using partial least squares (PLS) analysis, Curr. Comput. Aided Drug Des. 8 (2012), pp. 107–127.
  • A. Bak and J. Polanski, Modeling robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: Application to steroid, azo dye, and benzoic acid series, J. Chem. Inf. Model. 47 (2007), pp. 1469–1480.
  • J. Polanski, A. Bak, R. Gieleciak, and T. Magdziarz, Modeling robust QSAR, J. Chem. Inf. Model. 46 (2006), pp. 2310–2318.
  • V. Centner, D.L. Massart, O.E. de Noord, S. de Jong, B.M.V. Vandeginste, and C. Sterna, Elimination of uninformative variables for multivariate calibration, Anal. Chem. 68 (1996), pp. 3851–3858.
  • J. Zupan and J. Gasteiger, Neural networks and drug design for chemists, Wiley-VCH, Weinheim, 1999.
  • A. Bak and J. Polanski, The 4D-QSAR study on anti-HIV HEPT analogues, Bioorg. Med. Chem. 14 (2006), pp. 273–279.
  • A. Bak, V. Kozik, A. Smolinski, and J. Jampilek, Multidimensional (3D/4D-QSAR) probability-guided pharmacophore mapping: Investigation of activity profile for a series of drug absorption promoters, RCS Advances 6 (2016), pp. 76183–76205.
  • I.V. Tetko, P. Bruneau, H.W. Mewes, D.C. Rohrer, and G.I. Poda, Can we estimate the accuracy of ADME-Tox predictions?, Drug Discov. Today 11 (2006), pp. 700–707.
  • I.V. Tetko, Y.V. Tanchuk, T.N. Kasheva, and A.E.P. Villa, Internet software for the calculation of the lipophilicity and aqueous solubility of chemical compounds, J. Chem. Inf. Comput. Sci. 41 (2001), pp. 246–252.
  • I.V. Tetko and P. Bruneau, Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database, J. Pharm. Sci. 93 (2004), pp. 3103–3110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.