217
Views
12
CrossRef citations to date
0
Altmetric
Articles

Machine learning-based models to predict modes of toxic action of phenols to Tetrahymena pyriformis

, , , , &
Pages 735-747 | Received 26 Jul 2017, Accepted 01 Sep 2017, Published online: 12 Oct 2017
 

Abstract

The phenols are structurally heterogeneous pollutants and they present a variety of modes of toxic action (MOA), including polar narcotics, weak acid respiratory uncouplers, pro-electrophiles, and soft electrophiles. Because it is often difficult to determine correctly the mechanism of action of a compound, quantitative structure-activity relationship (QSAR) methods, which have proved their interest in toxicity prediction, can be used. In this work, several QSAR models for the prediction of MOA of 221 phenols to the ciliated protozoan Tetrahymena pyriformis, using Chemistry Development Kit descriptors, are reported. Four machine learning techniques (ML), k-nearest neighbours, support vector machine, classification trees, and artificial neural networks, have been used to develop several models with higher accuracies and predictive capabilities for distinguishing between four MOAs. They showed global accuracy values between 95.9% and 97.7% and area under Receiver Operator Curve values between 0.978 and 0.998; additionally, false alarm rate values were below 8.2% for training set. In order to validate our models, cross-validation (10-folds-out) and external test-set were performed with good behaviour in all cases. These models, obtained with ML techniques, were compared with others previously reported by other researchers, and the improvement was significant.

Acknowledgements

J.A. Castillo-Garit and G.M. Casañola-Martin thank the program ‘Estades Temporals per an Investigadors Convidats’ for a fellowship to work at Valencia University in 2013. F. Torrens acknowledges support from the Spanish Ministerio de Economía y Competitividad (Project No. BFU2013-41648-P) and EU ERDF.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.