218
Views
12
CrossRef citations to date
0
Altmetric
Articles

Machine learning-based models to predict modes of toxic action of phenols to Tetrahymena pyriformis

, , , , &
Pages 735-747 | Received 26 Jul 2017, Accepted 01 Sep 2017, Published online: 12 Oct 2017

References

  • R. Garg, A. Kurup, and C. Hansch, Comparative QSAR: On the toxicology of the phenolic OH moiety, Crit. Rev. Toxicol. 31 (2001), pp. 223–245.
  • S.P. Bradbury, Predicting modes of toxic action from chemical structure: An overview, SAR QSAR Environ. Res. 2 (1994), pp. 89–104.
  • H.H.P. Fang, T. Chen, Y.Y. Li, and H.K. Chui, Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor, Water Res. 30 (1996), pp. 1353–1360.
  • N. Caza, J.K. Bewtra, N. Biswas, and K.E. Taylor, Removal of phenolic compounds from synthetic wastewater using soybean peroxidase, Water Res. 33 (1999), pp. 3012–3018.
  • U.G. Ahlborg, and T. Thunberg, Chlorinated phenols: Occurrence, toxicity, metabolism, and environmental impact, Crit. Rev. Toxicol. 7 (1980), pp. 1–35.
  • E. Argese, C. Bettiol, A. Ghelli, R. Todeschini, and P. Miana, Submitochondrial particles as toxicity biosensors of chlorophenols, Environ. Toxicol. Chem. 14 (1995), pp. 363–368.
  • M.P. Moulton and T.W. Schultz, Comparisons of several structure-toxicity relationship for chlorophenols, Aquat. Toxicol. 8 (1986), pp. 121–128.
  • C.M. Auer, J.V. Nabholz, and K.P. Baetcke, Mode of action and the assessment of chemical hazards in the presence of limited data: Use of structure-activity relationships (SAR) under TSCA, Section 5, Environ. Health Perspect. 87 (1990), pp. 183–197.
  • T. Ivanciuc, O. Ivanciuc, and D.J. Klein, Posetic quantitative superstructure/activity relationships (QSSARs) for chlorobenzenes, J. Chem. Inf. Model. 45 (2005), pp. 870–879.
  • S. Spycher, B.I. Escher, and J. Gasteiger, A quantitative structure–activity relationship model for the intrinsic activity of uncouplers of oxidative phosphorylation, Chem. Res. Toxicol. 18 (2005), pp. 1858–1867.
  • C.L. Russom, S.P. Bradbury, S.J. Broderius, D. Hammermeister, and R.A.E. Drummond, Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas), Environ. Toxicol. Chem. 16 (1997), pp. 948–967.
  • A.O. Aptula, T.I. Netzeva, I.V. Valkova, M.T.D. Cronin, and T.W. Schultz, Multivariate discrimination between modes of toxic action of phenols, Quant. Struct. Act. Relat 21 (2002), pp. 12–22.
  • S. Ren, Determining the mechanisms of toxic action of phenols to Tetrahymena pyriformis, Environ. Toxicol. 17 (2002), pp. 119–127.
  • S. Ren, Use of molecular descriptors in separating phenols by three mechanisms of toxic action, Quant. Struct.-Act. Relat. 21 (2002), pp. 486–492.
  • S.P. Bradbury, C.L. Russom, G.T. Ankley, T.W. Schultz, and J.D. Walker, Overview of data and conceptual approaches for derivation of quantitative structure-activity relationships for ecotoxicological effects of organic chemicals, Environ. Toxicol. Chem. 22 (2003), pp. 1789–1798.
  • G. Schuurmann, A.O. Aptula, R. Kuhne, and R.U. Ebert, Stepwise discrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay, Chem. Res. Toxicol. 16 (2003), pp. 974–987.
  • S. Ren, P.D. Frymier, and T.W. Schultz, An exploratory study of the use of multivariate techniques to determine mechanisms of toxic action, Ecotoxicol. Environ. Saf. 55 (2003), pp. 86–97.
  • S. Ren, and H. Kimand, Comparative assessment of multiresponse regression methods for predicting the mechanisms of toxic action of phenols, J. Chem. Inf. Comput. Sci. 43 (2003), pp. 2106–2110.
  • S. Spycher, E. Pellegrini, and J. Gasteiger, Use of structure descriptors to discriminate between modes of toxic action of phenols, J. Chem. Inf. Model. 45 (2005), pp. 200–8.
  • S.J. Enoch, M.T.D. Cronin, T.W. Schultz, and J.C. Madden, An evaluation of global QSAR models for the prediction of the toxicity of phenols to Tetrahymena pyriformis, Chemosphere 71 (2008), pp. 1225–1232.
  • G. Melagraki, A. Afantitis, H. Sarimveis, O. Igglessi-Markopoulou, and A. Alexandridis, A novel RBF neural network training methodology to predict toxicity to Vibrio fischeri, Mol. Divers. 10 (2006), pp. 213–221.
  • J. Guo, H. Chen, Z. Sun, and Y. Lin, A novel method for protein secondary structure prediction using dual-layer SVM and profiles, Proteins 54 (2004), pp. 738–743.
  • J. Zupan and J. Gasteiger, Neural Networks for Chemistry and Drug Design, Wiley-VCH Publishers, Weinheim, Germany, 1999.
  • S. Anzali, G. Barnickel, M. Krug, J. Sadowski, A. Teckentrup, and M. Wagener, The use of self-organizing neural networks in drug design, in 3D QSAR in Drug Design, H. Kubinyi, G. Folkers and Y.C. Martin, eds., Kluwer/ESCOM, Dordrecht, The Nederlands, 1998, pp. 273–299.
  • J.R. Quinlan, Induction of decision trees, Machine Learn. 1 (1986), pp. 81–106.
  • T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inform. Theory 13 (1967), pp. 21–27.
  • D. Aha and D. Kibler, Instance-based learning algorithms, Machine Learn. 6 (1991), pp. 37–66.
  • P. Larrañaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J.A. Lozano, R. Armañanzas, G. Santafé, A. Pérez, and V. Robles, Machine learning in bioinformatics, Brief. Bioinform. 7 (2006), pp. 86–112.
  • Y. Marrero-Ponce, E. Martínez-Albelo, G. Casañola-Martín, J.A. Castillo-Garit, Y. Echevería-Díaz, V. Zaldivar, J. Tygat, J. Borges, R. García-Domenech, F. Torrens, and F. Pérez-Giménez, Bond-based linear indices of the non-stochastic and stochastic edge-adjacency matrix. 1. Theory and modeling of ChemPhys properties of organic molecules, Mol. Div. 14 (2010), pp. 731–753.
  • J.A. Castillo-Garit, O. Del Toro-Cortés, V.V. Kouznetsov, C.O. Puentes, A.R. Romero Bohórquez, M.C. Vega, M. Rolón, J.A. Escario, A. Gómez-Barrio, Y. Marrero-Ponce, F. Torrens, and C. Abad, Identification in silico and in vitro of novel trypanosomicidal drug-like compounds, Chem. Biol. Drug Des. 80 (2012), pp. 38–45.
  • Y. Brito-Sánchez, J.A. Castillo-Garit, H. Le-Thi-Thu, Y. González-Madariaga, F. Torrens, Y. Marrero-Ponce, and J.E. Rodríguez-Borges, Comparative study to predict toxic modes of action of phenols from molecular structures, SAR QSAR Environ. Res. 24 (2013), pp. 235–251.
  • J.A. Castillo-Garit, O. del Toro-Cortés, M.C. Vega, M. Rolón, A. Rojas de Arias, G.M. Casañola-Martin, J.A. Escario, A. Gómez-Barrio, Y. Marrero-Ponce, F. Torrens, and C. Abad, Bond-based bilinear indices for computational discovery of novel trypanosomicidal drug-like compounds through virtual screening, Eur. J. Med. Chem. 96 (2015), pp. 238–244.
  • G.M. Casanola-Martin, H. Le-Thi-Thu, Y. Marrero-Ponce, J.A. Castillo-Garit, F. Torrens, F. Perez-Gimenez, and C. Abad, Analysis of proteasome inhibition prediction using atom-based quadratic indices enhanced by machine learning classification techniques, Lett. Drug Des. Discovery 11 (2014), pp. 705–711.
  • J.A. Castillo-Garit, Y. Marrero-Ponce, S.J. Barigye, R. Medina-Marrero, M.G. Bernal, J.M.G.d.l. Vega, F. Torrens, V.J. Arán, F. Pérez-Giménez, R. García-Domenech, and R. Acevedo-Barrios, In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach, J. Braz. Chem. Soc. 26 (2015), pp. 1218–1226.
  • Y. Cañizares-Carmenate, K. Mena-Ulecia, Y. Perera-Sardiña, F. Torrens, and J.A. Castillo-Garit, An approach to identify new antihypertensive agents using Thermolysin as model: In silico study based on QSARINS and docking, Arab. J. Chem. Available at https://doi.org/10.1016/j.arabjc.2016.10.003.
  • J.A. Castillo-Garit, C. Abad, G.M. Casañola-Martin, S.J. Barigye, F. Torrens, and A. Torreblanca, Prediction of aquatic toxicity of benzene derivatives to Tetrahymena pyriformis according to OECD principles, Curr. Pharm. Des. 22 (2016), pp. 5085–5094.
  • G.M. Casañola-Martin, H. Le-Thi-Thu, Y. Marrero-Ponce, J.A. Castillo-Garit, F. Torrens, A. Rescigno, C. Abad, and M. Tareq, Hassan Khan, Tyrosinase enzyme: 1. An overview on a pharmacological target, Curr. Top. Med. Chem. 14 (2014), pp. 1494–1501.
  • J.A. Castillo-Garit, G.M. Casañola-Martin, H. Le-Thi-Thu, H. Pham-The, and S.J. Barigye, A simple method to predict blood-brain barrier permeability of drug- like compounds using classification trees, Med. Chem. 13 (2017), p.https://doi.org/10.2174/1573406413666170209124302. Available online since October 10, 2016.
  • T.W. Schultz, TERATOX: Tetrahymena pyriformis population grow impairment endpoint- A surrogate for fish lethality, Toxicol. Meth. 7 (1997), pp. 289–309.
  • C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann, and E. Willighagen, The Chemistry Development Kit (CDK): An open-source java library for chemo- and bioinformatics, J. Chem. Inf. Comput. Sci. 43 (2003), pp. 493–500.
  • D.H. Wolpert and W.G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput. 1 (1997), pp. 67–82.
  • John C. Platt, Fast training of support vector machines using sequential minimal optimization, in Advances in Kernel Methods, Bernhard Schölkopf, Christophe J. C. Burges and Alexander J. Smola, eds., MIT Press, Cambridge, MA, USA, 1999, pp. 185–208.
  • R.P. Lippmann, An introduction to computing with neural nets, ACM SIGARCH Comput. Arch. News 16 (1988), pp. 7–25.
  • R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San Mateo, CA, 1993.
  • K. Vanhoof, Performance measures, in Conceptual Course on Data Mining, Universidad Central ‘Martha Abreu’ de Las Villas, Santa Clara, Cuba, 2006, p. 101.
  • I.H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed., Morgan Kaufmann Series in Data Management Systems, Morgan Kaufmann Publishers, San Francisco, CA, USA, 2005.
  • G. John, R. Kohavi, and K. Pfleger, Irrelevant features and the subset selection problem, in Machine Learning: Proceeding of Eleventh International Conference William W. Cohen and Haym Hirsh, Morgan Kaufman, San Francisco, CA, USA, 1994, pp. 121–129.
  • B. Pierre, S. Brunak, Y. Chauvin, C.A.F. Andersen, and N. Henrick, Assessing the accuracy of prediction algorithms for classification: An overview, Bioinformatics 16 (2000), pp. 412–424.
  • J.W. Shavlik (ed.), Analysis and Visualization of Classifier Performance: Comparison Under Imprecise Class and Cost Distribution, AAAI Press, Menlo Park, CA, August 14–17, 1997.
  • J.W. Shavlik (ed.), The Case Against Accuracy Estimation for Comparing Induction Algorithms, Morgan Kaufmann, San Francisco, CA, USA, 1998.
  • T. Fawcett, ROC graphs: Notes and practical considerations for researchers, Machine Learn 31 (2004), pp. 1–38.
  • C.X. Ling, J. Huang, and H. Zhang, AUC: A statistically consistent and more discriminating measure than accuracy, Proceedings of 18th International Conference on Artificial Intelligence (IJCAI-2003), Acapulco, Mexico, August 09–15, (2003), pp. 519–524.
  • A.P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recogn. 30 (1997), pp. 1145–1159.
  • J.A. Hanley and B.J. McNeil, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology 143 (1982), pp. 29–36.
  • M.T.D. Cronin, A.O. Aptula, J.C. Duffy, T.I. Netzeva, P.H. Rowe, I.V. Valkova, and T.W. Schultz, Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis, Chemosphere 49 (2002), pp. 1201–1221.
  • N. Nikolova-Jeliazkova, AMBIT: Building blocks for a future (Q)SAR decision support system (2006). Available at https://ambit.acad.bg.
  • J. Jaworska, N. Nikolova-Jeliazkova, and T. Aldenberg, QSAR applicability domain estimation by projection of the training set in descriptor space: A review, ATLA 33 (2005), pp. 445–459.
  • T.W. Schultz and T.I. Netzeva, Development and evaluation of QSARs for ecotoxic endpoints: the benzene response-surface model for Tetrahymena toxicity., in Modelling Enviromental Fate and Toxicity, M.T. Cronin and D. Livingstone, eds., CRC Press, Boca Raton, FL, 2004, pp. 265–284.
  • L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classification and Regression Trees, Wadsworth, Monterey, CA, 1984.
  • G. Gates, The reduced nearest neighbor rule, IEEE Trans. Inform. Theory 18 (1972), pp. 431–433.
  • P. Hart, The condensed nearest neighbor rule, IEEE Trans. Inform. Theory 14 (1968), pp. 515–516.
  • B.V. Dasarathy, Nosing around the neighborhood: A new system structure and classification rule for recognition in partially exposed environments, Pattern Anal. Machine Intell. 2 (1980), pp. 67–71.
  • A. Golbraikh, and A. Tropsha, Beware of q2!, J. Mol. Graphics Model. 20 (2002), pp. 269–76.
  • M.T. Cronin, A.O. Aptula, J.C. Duffy, T.I. Netzeva, P.H. Rowe, I.V. Valkova, and T.W. Schultz, Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis, Chemosphere 49 (2002), pp. 1201–1221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.