210
Views
3
CrossRef citations to date
0
Altmetric
Articles

Partitioning the total seatback reaction force amongst the lumbar spine motion segments during simulated rear-impact collisions

ORCID Icon, , , & ORCID Icon
Pages 613-619 | Published online: 07 Jul 2019
 

Abstract

Purpose. This study aimed to determine how the seatback force is distributed across lumbar spine motion segments during a simulated low-velocity rear-impact collision with and without the application of mechanical lumbar support. Methods. A ferroresistive pressure-sensing system was used during simulated rear-impact collisions (ΔV = 7.66 km/h). Total seatback reaction force was derived from pressure recordings as the product of calibrated pressure outputs and sensel areas. The three-dimensional position of the pressure mat and the lumbar spinous processes were tracked and then used to extract the seatback force that was applied to the lumbar motion segments. Results. On average, 77% (637 N) and 53% (430 N) of the total seatback force was applied directly to the lumbar spine with and without lumbar support, respectively (p < 0.001). In addition to four of five individual motion segments bearing a greater force with lumbar support (p < 0.029), the distribution of the total lumbar force was found to be significantly different between support type conditions. Conclusions. Although lumbar supports can alter the magnitude and distribution of shear force applied to the lumbar spine during low-velocity rear-impact collisions, they do not appear to elevate the injury risk.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). J.P.C. is further supported as the Canada Research Chair in Spine Biomechanics and Injury Prevention.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 279.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.