167
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The increase in c-fos expression in epileptic seizures is inhibited by magnetic field application, but not KCa1.1 channel expression

, , , , , , & show all
Pages 81-97 | Received 11 Apr 2023, Accepted 15 Jul 2023, Published online: 20 Aug 2023
 

ABSTRACT

The aim of this study was to understand the expression of big potassium (BK, KCa1.1) channels in epileptic seizures under magnetic field application. Forty Wistar albino adult male rats were divided into five groups (n = 8). First group rats were control group. Pentylenetetrazole (PTZ) administrated to second group rats to induce the seizures with 35 mg/kg intraperitoneally injection every two days. Levetiracetam (LEV) i.p. at a dose of 108 mg/kg was given to third group rats as positive control group (PC) before 20 minutes PTZ administration. Pulsed magnetic field with 1.5 mT was exposed to the fourth group rats for 3 hours a day for 1 month as magnetic field (MF) group. 1.5 mT pulsed magnetic field was exposed to the fifth group rats for 3 hours a day for 1 month in addition to PTZ administration (PTZ+MF). KCa1.1 not changed in hippocampus of PTZ rats while increased in frontal cortex and pons for PTZ group but not changed with magnetic field exposure. KCa1.1 increased in heart of PTZ animals and turned back to mean control values with magnetic field exposure. Suppressing the expected increase of c-fos protein expression in seizures with magnetic field application but not being able to change the KCa1.1 expression shows that new studies can be done by increasing the frequency of 1.5 mT magnetic field.

Acknowledgments

We thank Arda Kaan UNER for his all efforts. This study was supported by TUBITAK within the scope of the 1002 rapid support program with the project number 221S563.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported as funding by TUBITAK within the scope of the 1002 rapid support program with the project number 221S563.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.